期刊文献+

基于ICA-PCA的化工流程仪表故障诊断 被引量:1

Instrument fault monitoring in process industry with independent component analysis and principal component analysis
原文传递
导出
摘要 传统的多元统计过程控制(MSPC)的故障诊断方法要求观测变量数据服从高斯分布,然而实际化工流程中的仪表数据中难以满足这一要求。针对这一问题,提出在仪表数据中提取分离出非高斯信息和高斯信息,并分别利用独立元分析法和主元分析法建立不同的故障诊断模型。在检测到发生故障后,通过改进的贡献度算法定位出发生故障的仪表。通过对Tennessee Eastman(TE)过程数据进行仿真研究,验证了ICA-PCA故障诊断法在化工流程仪表不同故障诊断中的有效性。 Multivariate statistical process control(MPSC) method assumes that the monitored variables have a Gaussian distribution. In fact, most of the Instrument data don't have a Gaussian distribution. A instrument fault monitoring method based on independent component analysis(ICA) and principal component analysis(PCA) is proposed to extract the Gaussian and non-Gaussian information for fault detection and diagnosis. The fault source of instrument can be determined by contribution algorithm. The proposed fault diagnosis method is proved to bc effective by simulation with the data from the Tennessee Eastman process.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第7期823-826,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(51169007) 云南省科技计划项目(2010DH004 2011DA005 2011FZ036) 云南省中青年学术和技术带头人后备人才培养计划项目(2011C1017) 云南省教育厅基金(2011Y386)
关键词 仪表故障诊断 主元分析 独立元分析 instrument fault diagnosis principal component analysis independent component analysis
  • 相关文献

参考文献3

二级参考文献19

  • 1何宁,谢磊,郭明,王树青.基于独立成分的动态多变量过程的故障检测与诊断方法[J].化工学报,2005,56(4):646-652. 被引量:8
  • 2杨慧中,高岩,张素贞,丁锋.独立成分分析和支持向量机混合方法在过程监控中的应用[J].计算机与应用化学,2007,24(3):295-298. 被引量:2
  • 3WISE B M, GALLAGHER N B. The process chemometrics approach to process monitoring and fault detection [J].Journal of Process Control, 1996, 6(6): 329- 348.
  • 4KRUGER U, CHEN Q, SANDOZ DJ, et al. Extended PLS approach for enhanced condition monitoring of industrial processes [J]. AIChE Journal, 2001, 47 (9):2076 - 2091.
  • 5WANG H Q, SONG Z H, LIP. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods [J]. Industrial & Engineering Chemistry Research, 2002, 41 (10):2455 - 2464.
  • 6WAKELING I N, MORRIS J J. A test of significance for partial least squares regression [ J]. Journal of Chemometrics, 1993, 7(4): 291 - 304.
  • 7SHAO J. Linear model selection by cross-validation [J].Journal of the American Statistical Association, 1993, 88(422): 486 - 494.
  • 8DOWNS J J, VOGEL E F. A plant-wide industrial process control problem [J]. Computers & Chemical Engineering,1993, 17(3): 245-255.
  • 9LYMAN P R, GEORGAKIST C. Plant-wide control of the Tennessee Eastman problem [J]. Computers & Chemical Engineering, 1995, 19(3): 321 - 331.
  • 10CHIANG L H, BRAATZ R D, RUSSELL E. Fault detection and diagnosis in industrial systems [M]. London,New York: Springer, 2001.

共引文献17

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部