期刊文献+

机械基础结构多目标拓扑优化设计方法 被引量:4

Multi-objective Topology Optimal Design of Mechanical Infrastructure
下载PDF
导出
摘要 机械的基础结构在保证具有足够的刚度、强度和稳定性的条件下,经济性也必须要好,因此机械基础结构常采用内部布置有加筋板的箱体结构。以某机械基础结构为例,分别用基于经验设计的内部筋板布置方法和多目标拓扑优化方法进行优化设计,得到了2种设计方案;比较了2种方案的动静态力学性能。结果表明,多目标拓扑优化设计的基础结构比一般经验设计的结构,刚度有所提高,而结构质量减小11.21%,一阶固有频率提高25.07%。 Mechanical infrastructure should have good economic efficiency under the condition of sufficient rigidity, strength, and stability. Therefore, box structure with inner stiffener plates is usually applied for mechanical infrastruc- ture. Empirical design method and multi-objective topology optimal design were carried out respectively on layout of in- ner stiffener plates of a sample mechanical infrastructure, and two design schemes were obtained. The static and dy- namic mechanical properties by the two design schemes were compared. The result showed that multi-objective topology optimal design is much better, by which the rigidity of the optimized structure is improved, the weight of the optimized structure is reduced by 11.21% , and the first natural frequency is increased by 25.07% by compared with that of the empirical design method.
机构地区 上海理工大学
出处 《包装工程》 CAS CSCD 北大核心 2013年第15期15-18,39,共5页 Packaging Engineering
基金 国家自然科学基金资助项目(50875174 51175347) 上海市教委科研创新重点项目(13ZZ114)
关键词 机械基础结构 多目标优化 拓扑优化 折衷规划 mechanical infrastructure multi-objective optimization topology optimization compromise programming
  • 相关文献

参考文献7

二级参考文献61

共引文献367

同被引文献30

  • 1倪晓宇,易红,汤文成,倪中华.机床床身结构的有限元分析与优化[J].制造技术与机床,2005(2):47-50. 被引量:89
  • 2张学玲,徐燕申,钟伟泓.基于有限元分析的数控机床床身结构动态优化设计方法研究[J].机械强度,2005,27(3):353-357. 被引量:94
  • 3李大军,刘波,程朋根,刘学军.模糊空间对象拓扑关系的Rough描述[J].测绘学报,2007,36(1):72-77. 被引量:13
  • 4张宇,杨慕升,李晓沛.面向质量目标的尺寸链和统计公差设计方法[J].机械工程学报,2007,43(4):1-6. 被引量:15
  • 5谢里阳.现代机械设计方法[M].北京:机械工业出版社,2011.
  • 6Ronald V Kalafsky, Alan D Mac Pherson. The competitive characteris- tics of U. S manufacturers in the machine tool industry[ J]. Small Busi- ness Economics, 2002, 19 (4) :355 - 369.
  • 7Lothar Harzheim, Gerhard Graf. A review of optimization of cast parts u- sing topology optimization II -Topology optimization without manufac- turing constraints [ J ]. Structural Muhidisciplinary Optimization, 2006, 31:388 -399.
  • 8Rajeev S, Krishnamoorthy C S. Genetic algorithms -based methodolo- gies for design optimization of trusses [ J 1. Journal of Structural Engi- neering, 1997, 123 ( 3 ) :350 - 358.
  • 9RozvanyG I N, Querin O M, L6g6J, et al. Exact analytical theory of to- pology optimization with some pre - existing members or elements [ J ]. Structural and Muhidisciplinary Optimization. 2006, 31 (5) :373 - 377.
  • 10Schittkowski K. An lntergrated knowledge - based problem solving system for structural optimization[C]. Structural Optimization IUTAM Symposi- um on Structural Optimization. Melbiurne, Australia, 1988:9 -13.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部