期刊文献+

一种非共轴应变硬化本构模型数值应用及离心机试验验证 被引量:3

Numerical application and centrifuge test verification of a non-coaxial strain hardening constitutive model
下载PDF
导出
摘要 在土体的剪切变形过程中,当主应力方向产生旋转时,主应变增量方向与主应力方向之间存在显著的非共轴现象.同时,机动摩擦角、膨胀角随着累积塑性偏应变的增长而增加,土体具有应变硬化的特点.传统的弹塑性本构模型不能够反映上述现象对地基承载力特性的影响.为了能够对地基承载力问题进行合理的分析,建立了一种非共轴应变硬化模型,并将该模型运用到有限元计算中.通过与三轴试验和离心机模型试验结果进行对比,对该模型在数值应用中的合理性进行了验证.研究结果表明,该模型能够对不同围压下的应力-应变关系进行预测.对浅基础承载力问题进行研究时,非共轴应变硬化模型的计算结果比传统弹塑性本构模型更加接近于离心机试验结果,验证了该模型的数值应用合理性. In the process of shearing deformation of soil, the non-coaxial phenomenon between the directions of principal strain increment and principal stress is very apparent while the principal stress direction is rotating. Meanwhile, the mobile friction angle and dilation angle increase accompanying with the accumulation of plastic deviator strain, so soil mass has strain hardening characteristic. The traditional elastic-plastic constitutive model could not reflect the influence of these phenomena on foundation bearing capacity. In order to research into the bearing capacity problem reasonably, a non- coaxial strain hardening model is suggested and adopted into the FEM calculation. The rationality in numerical application is confirmed by the comparison with triaxial test and centrifuge model test results. The test results show that this model can predict the stress-strain relation under different confining pressure. When the non-coaxial strain hardening model is used to analyze the shallow foundation bearing capacity problem, compared with the traditional elastic-plastic constitutive model, its numerical results are more close to the centrifuge test results, which indicates that this model can be adopted into the numerical analyses reasonably.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第4期551-558,共8页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(51079018)
关键词 非共轴 应变硬化 本构模型 数值应用 离心机试验 non-coaxial strain hardening constitutive model numerical application centrifuge test
  • 相关文献

参考文献18

  • 1Roscoe K H. The influence of strains in soil mechanics[J]. Geotechnique , 1970,20(2): 129- 170.
  • 2Prade! D, Ishihara K, Gutierrez M. Yielding and flow of sand under principal axes rotation[n. Soils and Foundations, 1990, 30(1) :87-99.
  • 3Joer H A, LanierJ, Fahey M. Deformation of granular material due to rotation of principal axes[n. Geotechnique , 1998,48(5) :605-619.
  • 4Manzari M T, Dafalias Y F. A critical state two?surface plasticity model for sands[J]. Geotechnique , 1997,47(2) :255-272.
  • 5Kolymbas D. An outline of hypoplasticity[J]. Archive Applied Mechanics, 1991, 61:143-151.
  • 6YANG Yun-rning , Muraleetharan K K. Middle surface concept and its application to elasto-plastic behavior of saturated sands[J]. Geotechnique, 2003, 53(4) :421-431.
  • 7YANG Yun-rning , YU Hai-sui. Application of a non-coaxial soil model in shallow foundations[J]. Geomechanics and Geoengineering , An InternationalJournal, 2006, 1(2) :139-150.
  • 8YANG Yun-ming , YU Hai-sui. Numerical aspects of non-coaxial model implementations[J]. Computers and Geotechnics, 2010, 37(1) :93-102.
  • 9RudnickiJ W, RiceJ R. Conditions for the localisation of deformation in pressure-sensitive dilatant materials[J].Journal of Mechanics and Physics of Solids, 1975, 23(6) :371-394.
  • 10Papamichos E, Vardoulakis 1. Shear band formation in sand according to non-coaxial plasticity model[n. Geotechnique, 1995,45(4) :649-66l.

二级参考文献30

  • 1栾茂田,许成顺,何杨,郭莹,李木国.主应力方向对饱和松砂不排水单调剪切特性影响的试验研究[J].岩土工程学报,2006,28(9):1085-1089. 被引量:25
  • 2DUNCAN J M, CHANG C. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96(SM5): 1629-1653.
  • 3LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. J. Geoteeh. Eng. Div., ASCE, 1975, 101(10):1037-1053.
  • 4SCHANZ T, VERMEER P A, BONNIER P G. The Hardening Soil Modell- Formulation and Verification[C]// Proceedings Plaxis Symposium "Beyond 2000 in Computational Geotechnics", Amsterdam. Rotterdam: Balkema, 1999:281--296.
  • 5POTTS D M, DOUNIAS G T, VAUGHAN P R. Finite element analysis of progressive failure of Carsington embankment[J]. Geoteehnique, 1990, 40(1): 79--101.
  • 6TRONCONE A. Numerical analysis of a landslide in soils with strain-softening behaviour[J]. Geotechnique, 2005, 55(8): 585--596.
  • 7KONDER R L. Hyperbolic stress-strain response: Cohesive soils[J]. Journal of the Soil Mechanics and Foundation Division, 1963, 89(SM1): 115 -- 143.
  • 8ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proc. Roy. Soc. A., 1962, 269: 500-527.
  • 9CHARLES JA, WATTS KS. The influence of confining pressure on the shear strength of compacted rockfill[J]. Geotechnique, 1980, 30(4): 353--367.
  • 10JANBU N. Soil compressibility as determined by Oedometer and Triaxial Tests[C]//Proc., European Conf. on Soil Mechanics and Foundation Engineering. [S. l.]: [s. n.], 1963, 1: 19-25.

共引文献22

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部