期刊文献+

基于集聚度增量的空间聚类算法 被引量:1

A Fast Algorithm of Spatial Clustering Based on Agglomeration
下载PDF
导出
摘要 该文借鉴了复杂网络领域的模块度概念,构造了空间点集的集聚度函数。基于集聚度的增量值,提出一个快速的空间聚类算法。实验证明,该值同点集的类间均方差(SSB)与类内均方差(SSE)的比值(SSB/SSE)有相同的结论,可以评价不同的点集在空间分布上的集聚程度(即群簇结构是否明显),同时该算法可以在不预先设定聚类个数的情况下快速有效地得到聚类结果。 In the field of spatial analysis, clustering is always under the spotlight. Many methods for cluster detection have been well studied. Among them, there exists a key issue which many researchers are concentrated on. That is how to get the optimal clustering results when we don't know the number of clusters beforehand. In the field of complex networks, modularity is used to measure the clustering of links. Based on the modularity, a definition of agglomeration was proposed to measure the spatial clustering structure. Then, a fast algorithm was put forward for grouping space points based on the increment of agglomeration. The experiments show that the value of agglomeration can evaluate the clustering structure between different datasets, and the result is similar to the SSB/SSE(SSB is the variance between clusters, and SSE is the variance within the clusters). In additional, the algorithm runs quickly and effectively.
出处 《地理与地理信息科学》 CSCD 北大核心 2013年第4期104-108,共5页 Geography and Geo-Information Science
基金 国家自然科学基金项目(41171296) 国家863计划项目(2012AA12A211)
关键词 空间聚类 群簇结构 集聚度 复杂网络 模块度 spatial clustering cluster structure agglomeration complex network modularity
  • 相关文献

参考文献8

  • 1罗可,蔡碧野,吴一帆,谢中科,张丽.数据挖掘中聚类的研究[J].计算机工程与应用,2003,39(20):182-184. 被引量:31
  • 2LII)YD S P. Least .squares quantization in PCM[J]. IEEE Transac- tions on Information Theory, 1982,28 .. 128- 137.
  • 3M,KRIEGEL H P,SANDER J,et al. A density-based al- gorithm for discovering clusters in large spatial databases[A]. Proceedings of the 2nd Internatinal Conference on KnowledgeDiscovery and Data Mining[C]. Amsterdam.. Elsevier Science, 1996. 226-231.
  • 4NEWMAN M E J,GIRVAN M. Finding and evaluating community structure in networks[J]. Phys. Rev. E, 2004,69(026113).
  • 5BARAB,/iSIAL徐彬(译).Linked[M].长沙:湖南科学技术出版社,2007.8.
  • 6CLAUSET A, NEWMAN M E J, MOORE C. Finding commu- nity structure in very large networks[J]. Phys. Rev. E, 2004,70 (066111).
  • 7TANPN,STEINBAcHM,KUMARV数据挖掘导论(英文版)[M].北京:机械工业出版社,2010.523-524.
  • 8孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072

二级参考文献9

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2A K Jain,M N Murty,P J Flynn.Data clustering:A survey[J].ACM Computer Surv, 1999 ;31 : 264-323.
  • 3R Agrawal,J Gehrke,D Gonopolos et al.Automatic subspace clustering of high dimensional data for data mining applications[C].In :Proc 1995 ACM-SIGMOD Int Conf Management of Data,Seattle,WA,.1998:94-105.
  • 4R Agrawal,R Srikant.Privacy-preserving data mining[C].In :Proc 2000 ACM-SIGMOD Int'l Conf.Management of Data,Dallas,TX,2000:439-450.
  • 5P Bradley,U Fayyad,C Reina.Scaling Clustering Algorithms to Large Databases[C].In:Knowledge Discovery and Data Mining,AAAI Press, Menlo Park,Calif, 1998:9-15.
  • 6V Ganti et al.Clustering Large Datasets in Arbitrary Metric Spaces [C].In : Data Engineering, IEEECS Press, Los Alamitos, Calif, 1999 : 502-511.
  • 7M Goebel,L Gruenwald.A survey of data mining and knowledge discovery software tools[J].SIGKDD Explorations, 1999: ( 1 ) :20-33.
  • 8胡侃,夏绍玮.基于大型数据仓库的数据采掘:研究综述[J].软件学报,1998,9(1):53-63. 被引量:256
  • 9罗可,吴杰.巨型数据库中的数据采掘[J].计算机工程与应用,2001,37(20):88-91. 被引量:9

共引文献1101

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部