期刊文献+

四边简支双曲率蜂窝夹层薄壳自由振动分析 被引量:1

Free vibration analysis of a double-curvature honeycomb sandwich thin shell with simply supported boundaries
下载PDF
导出
摘要 基于Reddy三阶剪切理论,研究了四边简支双曲率蜂窝夹层薄壳的自由振动,以及结构参数对蜂窝夹层薄壳固有频率的影响。将由六边形胞元组成的蜂窝芯层等效为一正交异性层,其等效弹性参数由修正后的Gibson公式得到,应用Reddy三阶剪切理论和Hamilton变分原理推导出四边简支条件下双曲率蜂窝夹层薄壳的频率方程。具体算例表明,采用Reddy三阶剪切理论计算的固有频率精度较高;双曲率蜂窝夹层薄壳的曲率、厚度比及胞元角度对蜂窝夹层壳固有频率有不同程度的影响,其中蜂窝夹层薄壳的固有频率随曲率的增大而增大,随厚度比的增大呈波动变化,随胞元角度的增大而减小。 Free vibration of a double-curvature honeycomb sandwich thin shell with simply supported boundary conditions was investigated by using Reddy's third-order theory and the influences of the structural parameters on its natural frequencies were also studied.Here,the honeycomb core of hexagonal cells was modeled as a layer of orthotropic material with physical and mechanical properties determined using the corrected Gibson's formula.The frequency equation of the honeycomb sandwich thin shell was deduced with Reddy's third-order theory and Hamilton's variational principle.The results indicated that Reddy's third-order theory has adequate accuracy to compute the natural vibration frequencies of the double-curvature honeycomb sandwich thin shell;the effects of curvature,thickness ratio and cell angle on the natural vibration frequencies of the double-curvature honeycomb sandwich thin shell are different,the natural frequencies of the honeycomb sandwich thin shell increase with increase in curvature,fluctuate with increase in thickness ratio and decrease with increase in cell angle.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第14期11-15,22,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51105066)
关键词 蜂窝夹层薄壳 自由振动 Reddy三阶剪切理论 固有频率 honeycomb sandwich thin shell free vibration Reddy's third-order theory natural frequencies
  • 相关文献

参考文献22

  • 1Ma X R, Wang B L, Gou X Y. Dynamics of spacecraft [ M ]. Beijing, MI: Science Press, 2001.
  • 2Allen H G. Analysis and design of structural sandwich panels [M]. Oxford: Pergamon Press, 1969.
  • 3Reddy J, Phan N D. Stability and vibration of isotropic, orthotropic and laminated plates according a higher-order shear deformation theory [ J ]. Journal of Sound and Vibration, 1985, 98(2) : 157 -170.
  • 4Gibson L J, Ashby M F, Schajer G S,et al. The mechanics of two-dimensional cellular materials [ J ]. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences) , 1982, 382(1782) : 25 -42.
  • 5王颖坚.蜂窝结构在面内剪力作用下的变形模式[J].北京大学学报(自然科学版),1991,27(3):301-307. 被引量:19
  • 6Silva M J, Hayes W C, Gibson L J. The effects of non- periodic microstructure on the elastic properties of two- dimensional cellular solids [ J ]. International Journal of Mechanical Sciences, 1995, 37( 11 ) : 1161 - 1177.
  • 7Torquato S, Gibiansky L V, Silva M J, et al. Effective mechanical and transport properties of cellular solids [ J ]. International Journal of Mechanical Sciences, 1998, 40 (1) : 71 -82.
  • 8Saito T, Parbery R D, Okuno S. Parameter identifyication for aluminum honeycomb sandwich panels base on orthotropic Timoshenko beam theory [ J ]. Journal of Sound and Vibration, 1997, 208(2):271 -287.
  • 9Lai L. Study of free vibration of aluminium honeycomb panels [ D ]. Toronto :University of Toronto. 2002.
  • 10Nilsson E, Nilsson A C. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores [ J ]. Journal of Sound and Vibration, 2002, 251 ( 3 ) : 409 - 430.

二级参考文献48

  • 1张军,谌勇,华宏星,张志谊.卫星减振的试验研究[J].应用力学学报,2006,23(1):76-79. 被引量:10
  • 2崔光育.蜂窝夹层壳非线性静动力分析.清华大学博士学位论文[M].,1995..
  • 3蘧时胜.复合材料多层板有限元法及其参数识别.清华大学博士学位论文[M].,1996..
  • 4Mouritz A P, Gellert E, Burchill P, et al. Review of advanced composite structures for naval ships and submarines [J]. Composite Structures. 2001, 53(1): 21 -42.
  • 5Jones N, Wierzbicki T. Structural crashworthiness and failure [M]. Elsevier Science Publishers Ltd, 1993.
  • 6Wierzbicki T. On the crush mechanics of thin-walled structures [ J ]. Journal of Applied Mechnies, 1983, 50: 727 - 734.
  • 7Lu G X, Yu T X. Energy Absorption of Structures and Materials [ M]. Cambridge, Wood-head Publishing,2003.
  • 8Xue Z Y, Hutchinson J W. Constitutive model for quasi-static deformation of metallic sandwich cores [J]. International Journal for Numerical Method in Engineering, 2004, 61: 2205 - 2238.
  • 9Hill R A. Theory of the yielding and plastic flow of anisotropic metals [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 193(1033) : 281 -297.
  • 10Xue Z Y, Hutchinson J W. Crush dynamics of square honeycomb sandwich cores [ J ]. International Journal for Numerical Method in Engineering. 2005, 65 : 2221 - 2245.

共引文献178

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部