摘要
提出了一种基于振动响应内积向量(Inner Product Vector,IPV)和数据融合的损伤检测方法,并进行了相应的验证试验研究。分别以随机信号和正弦信号对结构进行激励,利用加速度传感器采集结构的振动响应信号,计算结构的损伤指标,然后利用数据融合理论将结构各参考点下的损伤指标进行融合。损伤检测的验证试验结果表明,结合数据融合理论后,能够避免原始IPV方法中参考点选取对检测准确度的影响问题,并能准确进行损伤定位。两组不同激振信号的检测结果对比显示,数据融合对外激励为正弦信号的检测结果的准确度提升更为显著。
A structural damage detection method using inner product vector(IPV) of vibration responses and data fusion was investigated here,and the corresponding damage detection tests were performed.In tests,random excitations and sinusoidal excitations were adopted,respectively,and acceleration responses of a structure were acquired.The damage indexes were calculated based on IPV technique,and then the data fusion technique was further used to fuse the damage indexes calculated for different measured reference points.The damage detection test of a frame structure showed that the effect of reference points selection on the correctness of measurements in the original IPV method can be avoided and the structural damage can be detected correctly with combination of the IPV method and the data fusion technique.The comparison of the damage detection results with the two different type excitations demonstrated that the data fusion technique can improve the damage detection precision significantly when a structure is excited with sinusoidal signals.
出处
《振动与冲击》
EI
CSCD
北大核心
2013年第14期109-115,共7页
Journal of Vibration and Shock
基金
高等学校学科创新引智计划(B07050)
航空科学基金(2010ZA53008)
西北工业大学基础研究基金(JC20110202)
关键词
损伤检测
内积向量
数据融合
时域响应
随机激励
正弦激励
damage detection
inner product vector(IPV)
data fusion
time domain response
random excitation
sinusoidal excitation