期刊文献+

R^3中一类Blaschke张量迷向的旋转曲面

A class of rotation surfaces with isotropic Blaschke tensor in R^3
下载PDF
导出
摘要 在Mbius几何中,Blaschke张量是一个很重要的Mbius不变量.对Blaschke张量迷向的超曲面进行分类是Mbius几何中的一个重要问题.在本文中,我们研究了R3中Blaschke张量迷向旋转曲面,得到了Blaschke张量迷向曲面的微分方程.最后,利用微分方程的解找到了一类Blaschke张量迷向旋转曲面。 Blaschke tensor is one of the most important MObius invariants in MObius geometry. One of the important questions in MObius geometry is to classify the hypersurfaces with isotropic Blaschke tensor. In this paper, we study rotation surface with isotropic Blaschke tensor in R3 , and derive the dif- ferential equation of the rotation surface with isotropic Blaschke tensor. Finally, we find a class of rota- tion surfaces with isotropic Blaschke tensor by making use of the solutions of the differential equation.
出处 《楚雄师范学院学报》 2013年第6期7-10,共4页 Journal of Chuxiong Normal University
基金 楚雄师范学院学术后备人才资助项目 项目编号:09YJRC10
关键词 Mobius不变量 BLASCHKE张量 迷向 旋转曲面 Mobius invariant Blaschke tensor isotropic rotation surface
  • 相关文献

参考文献5

  • 1Liu, H.L., Wang, C.P., Zhao, G.S.. Mobius isotropic submanifolds in S^n [J] . Tohoku. Math, 2001, 53. 553-569.
  • 2Wang C. P.. Mobius geometry of submanifolds in S^n [J] Manuscripta Math. , 1998, 96: 517-534.
  • 3Z. Guo, J. B. Fang, L.M. Lin. Hypersurfaces with isotropic Blaschke tensor [ J ] . Math. Soe. Japan , 2011, 63, 1155-1186.
  • 4Haizhong Li. Willmore submanifolds in a sphere [ J ] . Mathematical Research Letters , 2002, 9: 771-790.
  • 5Zhen Guo. Higher order Willmore hypersurfaces in Euclidean space [ J ] . Acta. Math. Sinica. English series, 2008, 24: 5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部