期刊文献+

基于非负Tucker 3分解的稀疏分量分析在故障信号提取中的应用 被引量:1

Sparse component analysis based on nonnegative Tucker 3 decomposition for fault signal extraction
下载PDF
导出
摘要 针对初始故障信号不稀疏难于判断的问题,在非负Tucker 3分解(NTD)的基础上,提出了一种基于NTD的稀疏分量分析(SCA)处理二次特征信号的方法.同时,为了克服NTD算法收敛慢、易陷入过拟合等局限性,对分解因子增加了非负约束,并提出了对分解因子一次更新的算法.对比传统的最小交替二乘法,该更新算法能一次性地计算所有分解因子,避免了计算大规模的Jacobian矩阵,从而较大地提高了算法的效率.实验结果表明:NTD和SCA相结合的方法(SCA_NTD)只需迭代约150步可达到收敛,而且在频谱稀疏性处理方面优于NTF等传统的方法;在分解相同维数张量的条件下,SCA_NTD的最高精度达到了97.16%.因此,SCA_NTD不仅能够改善信号特征的稀疏性,而且对提高算法的收敛速度和精度也具有重要的意义. Aiming at the problem of non-sparseness of original diagnosis signal and being difficult to distinguish,a method of sparse component analysis(SCA) based on nonnegative Tucker 3 decomposition(NTD) is proposed to process the quadratic feature of faults for improving the sparseness.Meanw hile,a new updating algorithm w ith nonnegative constraints is put forw ard to overcome the limitation of slow convergence and data overfitting in NTD.Compared w ith the conventional alternative least squares(ALS),the updating algorithm can simultaneously compute all the factors in one time that avoids calculating the large-scale Jacobian matrix and therefore improves the efficiency.The experimental results show that the method of combining NTD and SCA(SCA_NTD) only needs 150 steps to achieve convergence w hich is superior to other typical methods like NTF,etc;SCA_NTD also gets the highest accuracy of 97.16% under the same dimension of a tensor.Therefore,SCA_NTD not only improves the sparseness but also is significant to improve the convergence and efficiency.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期758-762,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(50875048 51175079 51075069)
关键词 非负Tucker 3分解 稀疏分量分析 更新算法 交替最小二乘法 nonnegative Tucker 3 decomposition sparse component analysis updating algorithm alternative least squares method
  • 相关文献

参考文献15

  • 1Kolda T G. Multilinear operators for higher-order de-compositions^ M]. California, USA: Sandia NationalLaboratories, 2006.
  • 2Morup M, Hansen L K,Amfred S M. Algorithms forsparse nonnegative Tucker decompositions [ J ]. NeuralComputation, 2008,20(8) : 2112—2131.
  • 3Cichocki A, Zdunek R,Phan AH, et al. Alternatingleast squares and related algorithms for NMF and SCAproblems in nonnegative matrix and tensor factorizations[M ]. Chichester,UK: John Wiley & Sons, Ltd,2009: 203 -266.
  • 4Albright R, Cox J, Duling D, et al. Algorithms, ini-tializations ,and convergence for the nonnegative ma-trix factorization[ R]. Raleigh,USA; Carolina StateUniversity, 2006.
  • 5Karoui M S,Deville Y,Hosseini S,et al. Blind spatialunmixing of multispectral images : new methods combi-ning sparse component analysis,clustering and non-neg-ativity constraints [ J ]. Pattern Recognition, 2012,45(12): 4263-4278.
  • 6Hazan T,Polak S, Shashua A. Sparse image codingusing a 3D non-negative tensor factorization[ C ]//10thIEEE International Conference on Computer Vision‘Beijing,2005 : 50-57.
  • 7Lee D D,Seung H S. Learning the parts of objects bynon-negative matrix factorization [ J ]. Nature, 1999,401(6755) : 788-791.
  • 8Tucker L R. Some mathematical notes on three-modefactor analysis[J]. Psychometrika, 1966, 31(3) : 279-311.
  • 9Asaei A, Davies M E, Bourlard H,et al. Computation-al methods for structured sparse component analysis ofconvolutive speech mixtures [ C ] //IEEE InternationalConference on Acoustics, Speech and Signal Process-ing. Kyoto, Japan, 2012: 2425 -2428.
  • 10Paatero P,Tapper U. Positive matrix factorization: anon-negative factor model with optimal utilization of er-ror estimates of data values [ J ]. Environmetrics,1994,5(2) : 111-126.

二级参考文献40

共引文献5

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部