期刊文献+

亚微米电解加工的试验研究 被引量:3

Experimental study on submicron electrochemical machining
下载PDF
导出
摘要 为了增强Ag纳米线在亚微米电解加工中的稳定性,对其表面溅射金属Au.Ag纳米线的稳定性试验结果表明,溅射层越厚,Ag纳米线在电解加工环境中的稳定性越好,但是过厚的溅射层会使纳米线发生弯曲.当溅射层厚度约为55 nm时,溅射层不够致密,电解加工时亚微米工具电极会发生溶解;当溅射层厚度约为310 nm时,溅射层的内应力过大,亚微米工具电极出现弯曲.因此,采用溅射层厚度约为150 nm的亚微米工具电极进行亚微米电解加工.在浓度为0.1mol/L的H2SO4电解液中,施加电压为4 V、周期为50 ns、脉宽为6 ns的纳秒脉宽脉冲电流,于高温合金试件表面成功加工出亚微米沟槽,沟槽长约30μm,深约80 nm,底部最窄处约为450 nm,入口最宽处约1μm. In order to improve the stability of Ag nanowires in submicron electrochemical machining,Au is sputtered on the surface of Ag nanow ires.The results of stability experiments of Ag nanow ires show that the stability of Ag nanow ires increases w ith the increase of the thickness of sputtering layer.How ever,w hen the sputtering layer is too thick,Ag nanow ires are bent.When the thickness of the sputtering layer is about 55 nm,the submicron tool electrode dissolves in electrochemical machining due to loose sputtering layer,w hile it is bent because of large internal stress w hen the thickness of the sputtering layer is about 310 nm.Therefore,the submicron tool electrode w ith the thickness of the sputtering layer of about 150 nm is appropriate to submicron electrochemical machining.In the electrolyte w ith 0.1 mol/L H2SO4,by using the pulse generator with 50 ns in period,6 ns in pulse on-time and 4 V in voltage,a submicron groove w ith the length of 30 μm,depth of 80 nm,minimum bottom w idth of 450 nm and maximum entrance w idth of 1 μm is prepared successfully in the surface of high-temperature-alloys w orkpiece.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期777-781,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(91023018)
关键词 微纳电解加工 亚微米电解加工 AG纳米线 工具电极 micro-nano electrochemical machining submicron electrochemical machining Ag nanow ire tool electrode
  • 相关文献

参考文献11

  • 1张勇,王振龙,李志勇,杨洋,贾宝贤,胡富强,赵万生.微细电火花加工装置关键技术研究[J].机械工程学报,2004,40(9):175-179. 被引量:15
  • 2徐斌,伍晓宇,凌世全,吴世云,罗烽,杜晨林,孙秀泉.飞秒激光切割与微细电阻滑焊组合制备三维金属微结构[J].光学精密工程,2012,20(8):1811-1823. 被引量:11
  • 3Ghoshal B, Bhattacharyya B. Influence of vibration onmicro-tool fabrication by electrochemical machining[J ]. International Journal of Machine Tools & Manu-facture ,2013,64:49-59.
  • 4Schuster R, Kirchner V,Allongue P, et al. Electro-chemical micromachining [ J ]. Science,2000,289(5476) :98-101.
  • 5Kock M,Kirchner V,Schuster R. Electrochemical mi-cromachining with ultrashort voltage pulses—a versatilemethod with lithographical precision [ J ]. Electrochimi-ca Acta, 2003 , 48(20/21/22) : 3213 -3219.
  • 6Trimmer A L,Hudson J L,Kock M,et al. Single-stepelectrochemical machining of complex nanostructureswith ultrashort voltage pulses [ J]. Applied Physics Let-ters, 2003, 82(19):3327-3329.
  • 7Yasser K, Hisham A F,Zhang Y P,et al. Two-stepcontrollable electrochemical etching of tungsten scanningprobe microscopy tips [ J ]. Review of Scientific Instru-ments, 2012,83(6) :1 -8.
  • 8Ge Y Z, Zhang W, Chen Y L, et al. A reproducibleelectropolishing technique to customize tungsten SPMprobe: from mathematical modeling to realization [ J].Journal of Materials Processing Technology,2013, 213(1):11-19.
  • 9Chiou Y C,Lee R T, Chen T J, et al. Fabrication ofhigh aspect ratio micro-rod using a novel electrochemicalmicro-machining method [ J]. Precision Engineering,2012, 36(2) : 193-202.
  • 10Kenney J A, Hwang G S. Electrochemical machiningwith ultrashort voltage pulses : modelling of chargingdynamics and feature profile evolution [ J]. Nanotech-nology, 2005, 16(7):S309-S313.

二级参考文献27

  • 1伍晓宇,阮双琛,程蓉,等.一种金属叠层实体制造快速成形方法:中国,200910105056.2[P],2009-01-14.
  • 2Naotake M, Hiromichi M, Nagao S. Development of an electrical discharge drilling device by using a new method for direct drive of electrode. Journal of the Japan Society of Precision Engineering, 1992, 58 (12):2 063~2 068
  • 3Katsushi F, Naotake M, Toshiro H. Direct drive mechanism of EDM electrode utilizing elliptical movement. Journal of the Japan Society of Precision Engineering, 1995, 61 (5):672~676
  • 4Li Y, Guo M, Zhou Z Y, et al. Micro electro discharge machine with an inchworm type of micro feed Mechanism. Journal of the International Societies for Precision Engineering and Nanotechnology, 2002, 26:7~14
  • 5Masuzawa T, Fujino M, Kobayashi K, et al. Wire electro-discharge grinding for micro-machining. Annals of the CIRP, 1985, 34(1):431~434
  • 6YOSHIHIRO H. LIGA process-micromachining tech- nique using synchrotron radiation lithography and some industrial applications[J]. Nuclear Irzstruments and Methods in Physics Research, 2003(208) :21-26.
  • 7LERMER F, URBAN A. Challenges, developments and appIieations of silicon deep reactive ion etching[J]. Mi- croelectronic Engineering, 2003,67- 68 : 349- 355.
  • 8WENMIN Q. 3D-UV micro-forming: principles and application [J]. Engineering Science and Educa- tion Journal, 1999(2):13- 19.
  • 9DONGKEON L, HARUTAKA M, HIROSHI H. 3D UV-microreplication using cylindrical PDMS mold[J]. Microsyst Technol, 2010 (16): 1399- 1411.
  • 10SHIU P P,KNOPF G K,OSTOJIC M. Fabrication of metallic micro-molds by laser and electro-dis- charge micromachining[J]. Microsyst Technol, 2010(16) :477-485.

共引文献24

同被引文献74

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部