期刊文献+

基于Camshift自适应多特征模板的视频目标跟踪 被引量:5

Adaptive multi-feature template video target tracking based on Camshift algorithm
下载PDF
导出
摘要 Camshift算法实时性高,计算量小,在目标跟踪领域应用效果良好。但其仅依靠颜色模型的特点使得在噪声大、照度不均的井下视频目标跟踪中易造成目标丢失。通过在Camshift基础上建立多特征融合的模板自适应更新算法,实现边缘、纹理等特征的融合,制定特征贡献度规则,在环境变化时根据不同特征贡献度的不同自适应分配权重,更新模板。实验结果表明:新算法抗干扰能力强,特征间互补不足,跟踪准确,在煤矿复杂环境井下视频目标跟踪中有良好应用前景。 Camshift algorithm has high realtime performance and low computation, so it is widely used in target track ing field. Under the noisy and uneven illumination coal mine environment, Camshift algorithm will lose target easily, because it relies on color model only. A new adaptive template update model proposed based on the Camshift algorithm and multifeature, such as edge, texture and other features. While environment altering, features can change weight ra tionally by their different contributions, and the template update adaptively. Experiment showed that new algorithm has racked accuracy, high antiinterference ability and complement between different features. It has a good prospect in ob ject tracking under coal mine complex environment.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2013年第7期1299-1304,共6页 Journal of China Coal Society
基金 江苏省高校自然科学研究资助项目(11KJD120003) 江苏省产学研联合创新资金资助项目(BY2009114) 徐州市科技计划资助项目(XM12B078)
关键词 煤矿 CAMSHIFT算法 特征融合 模板更新 纹理 coal mine Camshift algorithm feature fusion template update texture
  • 相关文献

参考文献15

二级参考文献84

共引文献160

同被引文献58

  • 1许敬,王晓锋.基于贝叶斯概率的运动目标识别方法[J].南京理工大学学报,2013,37(1):76-80. 被引量:7
  • 2Sun Jiping,Li Chenxin.In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition[J].International Journal of Mining Science and Technology,2013,23(3):357-361. 被引量:11
  • 3吕卓纹,王科俊,李宏宇,阎涛.融合Camshift的在线Adaboost目标跟踪算法[J].中南大学学报(自然科学版),2013,44(S2):232-238. 被引量:3
  • 4闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 5Mazinan A H, Amirlatifi A. Applying mean shift, motion in- formation and Kalman filtering approaches to object tracking[J]. ISA Transactions, 2012,51 (3) : 485-497.
  • 6Wang F L,Yu S Y,Yang J. Robust and efficient fragments- based tracking using mean shift [J]. AEU International Journal of Electronics and Communications, 20 1 0,64 ( 7 ) : 614-623.
  • 7YIN Ming-hao, ZHANG Jin, SUN Hong-guang, et al. Multi- cue-based CamShift guided particle filter tracking[J]. Ex- pert Systems with Applications, 2011 ,38(5) : 6313-6318.
  • 8Wang Z W,Yang X K,Xu Y,et al. CamShift guided parti- cle filter for visual tracking[J]. Pattern Recognition Let- ters, 2009,30 (4) : 407-413.
  • 9ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 10GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].Radar and Signal Processing,1993,140(2):107-113.

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部