期刊文献+

Oozeer视神经纤维膜动力学特性的仿真

Simulation of Dynamic Membrane Properties for Oozeer Optic Nerve
下载PDF
导出
摘要 目的对Oozeer视神经纤维的膜特性进行仿真,研究不同离子通道在动作电位产生过程中的作用。方法利用Matlab编程和欧拉数值计算法对Oozeer视神经模型的膜动力学特性进行仿真;相平面图法分析脉冲电流对膜电位的相图和有无A型电流存在的dV/dt对V的相图。结果相图分析表明,动作电位的上升阶段主要是因为传统的快速钠离子流,而A型电流在复极化阶段起主要作用,持续钠离子流和慢速钾离子流的影响较小。A型电流存在时产生延迟的动作电位,且缩短动作电位的持续时间,膜电位升高到尖峰阈值时,膜电位的上升减缓。结论不同离子电流在动作电位形成过程中起不同作用,A型电流使视神经纤维膜动作电位复极化,对超极化后电位起主要作用。 Objective To study the roles of different ion channels during the action potential generation process by simulating the Oozeer Optic Nerve model' s membrane properties. Methods The Oozeer optic nerve model' s dynamic membrane properties were simulated using Matlab and Euler' s method. The phase plots of current versus membrane potential and dV/dt versus V with and without A-type current were analyzed during the im- pulse. Results Four ion channels in Oozeer Optic Nerve Model played different roles in forming the action po- tential. It could be seen that, from the phase diagram of dV/dt versus V, the ascent stage of action potential was mainly affected by the traditional fast sodium current and A-type potassium played a major role in the re- polarization, while the influence of continuous sodium current and slow potassium current was very small. The existence of A-type current would produce delayed action potential and reduce the duration of time. As the membrane potential increased towarded the spiking threshold, the rise of the membrane potential became slow. Conclusion Different ion currents have different effect on the formation of action potential. It is A-type current that influences repolarization of optic nerve fiber action potential as well as hyperpolarization.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2013年第4期291-294,共4页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(30870649)
关键词 Oozeer视神经模型 电压钳 相平面图法 视觉假体 Oozeer optic nerve model voltage clamp phase plane method visua-1 prosthesis
  • 相关文献

参考文献15

  • 1Rodrigo A, Brant F, Bruno D, et al. Artifical vision through neuronal stinmlation [ J ]. Neuroscience letters, 2012,519: 122-128.
  • 2Oozeer M, Veraart C. Simulation of intra-orbital optic nerve e- lectrical stimulation [ J]. Medical & Biological & Engineering & Computing, 2005, 43: 608-617.
  • 3Cohen ED. Prosthetic interfaces with the visual sy stem: bio- logical issues [ J ]. Neural Eng, 2007,4 : R14 -31.
  • 4Sui Xiaohong,Han Zhaolong , Zhou Dai, et at. Mechanical analysis and fabrication of a penera ting silicon microprobe as an artificial optic nerve visual prosthesis [ J ]. Int J Artif Or- gans,2012,35( 1 ) : 34-44.
  • 5Foblmeister JF, Miller RF. Impulse encoding mechanisms of ganglion cells in the Tiger Salamander retina[ J]. N eumphys- iol, 1997, 78(4) : 1935-1947.
  • 6Kim SY, Sadda S, Humayun MS, eta]. Morphometric analysis of the macula in eyes with geographic Atrophy due to age-re- lated macular degeneration [ J ]. Retina, 2002,22:464 -470.
  • 7Rizzo JF,Wyatt J, Humayun M, et al. Retinal prothesis: an encouringing first dicade with ma Jot challenges ahead:Edidi- torial[ J]. Oohthalmol-Ogy, 2001,108 : 13-14.
  • 8Oozeer M, Verraart CV, Legat J, et al. A model of the mam- malian optic neve fibre based on experimential data[ J]. Vi- son Reseach, 2006, 46:2513-2524.
  • 9Qiao Q, Zhang W, VencentC L, et at. Electric Stimulation of Optic Nerve Fiber: A Simulation Study [ C]. In: Rubin Wang. Advances in Cognitive Neurodynamics ICCN 2007. Berlin Heidelberg : Springer Netherlands, 2008 : 609-615.
  • 10Vincent CL, Qiao QL, Li LM, et al. Evoked membrane po- tential change in rat optic nerve fiber[ J]. Neuroscience Bul- letin_ 2007. 23 (6).348-356.

二级参考文献28

  • 1牛希娴,童善保,朱贻盛,邱意弘.视网膜建模的研究进展[J].生物医学工程学杂志,2008,25(4):962-966. 被引量:4
  • 2石萍,邱意弘,朱贻盛,童善保.人工视觉假体研究综述(Ⅱ)——视皮层、视神经束、感觉替代假体的研究现状[J].生物医学工程学杂志,2008,25(4):945-949. 被引量:7
  • 3Tao SU,Ai-Hua LUO,Wen-Dong CONG,Wei-Wen SUN,Wei-Yi DENG,Qi-Hua ZHAO,Zhuo-Hua ZHANG,Wei-Ping LIAO.Immunohistochemical investigation of voltage-gated potassium channel-interacting protein 1 in normal rat brain and Pentylenettrazole-induced seizures[J].Neuroscience Bulletin,2006,22(4):195-203. 被引量:2
  • 4Delbeke J, Pins D, Michaux G, et al. Electrical stimulation of anteri- or visual pathways in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2001, 42(1): 291-297.
  • 5Gekeler F, Kobuch K, Blatsios G, et al. Repeated transchoroidal implantation and explantation of compound subretinal prostheses: an exploratory study in rabbits[J]. Jpn J Ophthalmol, 2010, 54(5): 467- 475.
  • 6Klauke S, Goertz M, Rein S, et al. Stimulation with a wireless in- traocular epiretinal implant elicits visual percepts in blind humans [J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 449-455.
  • 7Caspi A, Dorn JD, McClure KH, et al. Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant[J]. Arch Oph- thalmol, 2009, 127(4): 398-401.
  • 8Maynard EM. Visual prostheses[J]. Annu Rev Biomed Eng, 2001, 3: 145-168.
  • 9Veraart C, Raftopoulos C, Mortimer JT, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode[J]. Brain Res, 1998, 813(1): 181-186.
  • 10Chai Xin-yu, Li Li-ming, Wu Kai-jie, et al. C-sight visual prostheses for the blind[J]. IEEE Eng Med Biol Mag, 2008, 27(5): 20-28.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部