期刊文献+

基于局部特征与轮廓控制的磁共振扩散张量插值方法 被引量:1

MR Diffusion Tensor Image Interpolation Method Based on Local Features and Profile Controlling
下载PDF
导出
摘要 目的在保持生物体扩散张量物理性质和控制张量行列式轮廓基础上进一步提高张量插值的质量。方法提出一种基于局部特征与轮廓控制扩散张量图像轮廓控制插值方法,也即基于邻近多个张量值的对数-欧氏距离,对基于黎曼测地线上非匀速运动的轮廓控制插值方法的空间距离进行修正。结果脑部磁共振扩散张量图像的插值重建实验结果表明,本文方法和其他常用插值方法相比,3种在不同的误差度量下误差较其他方法均有显著性改善(P<0.01),任取样本的各项异性分数值误差也有一定的减小。结论在脑磁共振扩散张量图像插值中,本文方法能保持生物体扩散张量物理性质并控制行列式轮廓,减少扩散张量插值的误差,改善插值效果。 Objective To improve the quality of diffusion tensor imaging (DTI) interpolation based on control- ling the interpolation determinant profile and keep the diffusion tensors' physical properties at the same time. Methods An improved interpolation scheme based on local features and profile controlling was proposed. That is to say, considering the Log-Euclidian distance of some nearby tensors, our scheme fixed the space distance of the interpolation based on non-unifoml motion on a Riemannian geodesic. Results The interpolation recon- struction experiment of medical DTI images showed that the interpolation error of our scheme had significant improvement (P 〈 0. 01 ) using different error metrics. And the fractional anisotropy error of tensors in random- ly selected samples was reduced. Conclusion For the interpolation of brain DTI image, our scheme can keep the diffusion tensors' physical properties and control the interpolation determinant profile. The error of DT1 in- terpolation can be reduced so that the interpolation is improved.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2013年第4期323-328,共6页 Space Medicine & Medical Engineering
关键词 张量插值 局部特征 轮廓控制 对数-欧氏距离 扩散张量图像 tensor interpolation local features profile control Log-Euclidean distance diffusion tensor ira- age
  • 相关文献

参考文献2

二级参考文献29

  • 1Alexander, D.C., Barker, GJ., 2005. Optimal imaging pa?rameters for fiber-orientation estimation in diffusion MRI. NeuroImage, 27(2):357-367. [doi:10.1016/j.neuroimage. 2005.04.008] Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, lC., 2001.
  • 2Spatial transformations of diffusion tensor MR images. IEEE Trans. Med. Imag., 20(11): 1131-1139. [doi:10. 1109/42.963816].
  • 3Arsigny, v.. Fillard, P., Pennec, X., Ayache, N., 2006. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med., 56(2):411-421. [doi:1 0.1 002/mrm.20965].
  • 4Bansal, R., Staib, L.H., Xu, D.R., Laine, A.F., Royal, r, Pe?terson, B.S., 2008. Using perturbation theory to compute the morphological similarity of diffusion tensors. IEEE Trans. Med. Imag., 27(5):589-607. [doi:10.1109ITMI. 2007.912391].
  • 5Basser, P.J., Mattiello, J., Bihan, D.L., 1994. MR diffusion tensor spectroscopy and imaging. Biophys. J, 66(1 ):259- 267. [doi:10.1016/S0006-3495(94)80775-1].
  • 6Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A., 2005. A rigorous framework for diffusion tensor calculus. Magn. Reson. Med., 53(1):221-225. [doi: 1 0.1 002/mrm.20334].
  • 7Chefd'Hotel, c., Tschumperle, D., Deriche, R., Faugeras, 0., 2004. Regularizing flows for constrained matrix-valued images. J Math. Imag. Vis.,20(l-2):147-162. [doi:10. 1023/B:JMIV.0000011920.58935.9c].
  • 8Filley, C.M., 2001. The Behavioral Neurology of White Matter. Oxford University Press, New York, p.299.
  • 9Fletcher, P.T, Sarang, J., 2007. Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Proc?ess., 87(2):250-262. [doi: 1 0.1 016/j.sigpro.2005.12.018].
  • 10Hoptrnan, MJ., Nierenberg, L, Bertisch, H.C., Catalano, D., Ardekani, B.A., Branch, c.x., DeLisi, L.E., 2008. A DTI study of white matter microstructure in individuals at high genetic risk for schizophrenia. Schizophr. Res., 106(2-3): 115-124. [doi:10.1016/j.schres.2008.07.023].

共引文献15

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部