期刊文献+

基于重力卫星几何轨道线性化的地球重力场反演方法 被引量:8

Linearization method of recovering Earth′s gravity field with respect to gravity satellite′s kinematic orbits
下载PDF
导出
摘要 传统动力学法的观测方程以6个初始轨道参数和先验力模型为初值进行线性化,其线性化误差随积分弧长拉长而增大.本文直接以重力卫星的几何观测轨道为初值进行线性化,其线性化误差与轨道弧长无关,且不需要初始重力场模型和初始轨道参数.导出了基于卫星轨道观测值反演重力场模型的相关公式,利用JPL公布的RL02版本2008年全年的GRACE双星轨道数据和加速度计数据解算了90阶次的地球重力场模型TJGRACE01S,并以EGM2008模型为基准与其他模型进行了比较分析,结果表明:TJGRACE01S模型直到90阶次的大地水准面累积误差为17.6cm,优于同阶次的EIGEN-CHAMP03S和EIGEN-CHAMP05S模型,前27阶位系数整体精度优于EIGEN-GRACE01S,前15阶位系数整体精度与EIGEN-GRACE02S模型精度大致相当.利用美国8221个GPS水准点数据的分析结果也表明,本文模型也优于同阶次的EIGEN-CHAMP03S和EIGEN-CHAMP05S模型. The observational equation of traditional dynamic method is linearized with respect to the satellite orbit integrated from the 6 initial orbit parameters and the given force model.This paper derives the observation equation linearization with respect to the kinematic orbit determined with GNSS observations;therefore its linearization error is not correlated to orbit arc length,and the initial orbit parameters and initial gravity field model are no longer needed.The correspondent expressions are derived for recovering the Earth′s gravity field from kinematic orbit.The earth′s gravity field model TJGRACE01S up to 90 degree and order is computed with RL02 orbit data of whole 2008 by using the developed approach.The recovered model is analyzed by comparing with the existent models with respect to EGM2008 model,the results show that the cumulative geoid height error of the model TJGRACE01S is 17.6 cm,which is more accurate than EIGEN-CHAMP03S and EIGEN-CHAMP05S,and TJGRACE01S′s coefficient accuracy as a whole is better than EIGEN-GRACE01S in the leading 27 degrees,and is almost the same as EIGEN-GRACE02S in the leading 15 degrees.The analyzed results using 8221 GPS leveling data of the USA demonstrate that the TJGRACE01S is also better than EIGEN-CHAMP03S and EIGEN-CHAMP05S.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第7期2238-2244,共7页 Chinese Journal of Geophysics
基金 国家973计划项目(2012CB957703) 国家自然科学基金(41074018 41104002)资助
关键词 卫星重力 地球重力场模型 GRACE卫星轨道 线性化 Satellite gravimetry Earth's gravity field model GRACE satellite orbit Linearization
  • 相关文献

参考文献17

  • 1Reigber C,Schmidt R,Flechtner F,et al.First GFZ GRACE gravity field model IGEN-GRACE01S.
  • 2Reigber C,Schmidt R,Flechtner F,et al.An Earth gravity field model complete to degree and order 150 from GRACE EIGEN-GRACE02S.Journal of Geodynamics,2005,39(1):1-10.
  • 3Tapley B,Ries J,Bettadpur S,et al.GGM02-An improved Earth gravity field model from GRACE.Journal of Geodesy,2005,79(8):467-478.
  • 4Chambers D P.Evaluation of new GRACE time-variable gravity data over the ocean.Geophys.Res.Lett.,33,L17603,doi:10.1029/2006GL027296.
  • 5Beutler G,Jaggi A,Mervart L,et al.The celestial mechanics approach:theoretical foundations.Journal of Geodesy,2010,84(10):605-624.
  • 6Mayer-Gürr T,Ilk KH,Eicker A,et al.ITG-CHAMP01:a CHAMP gravity field model from short kinematic arcs over a one-year observation period.Journal of Geodesy,2005,78(7-8):462-480.
  • 7Mayer-Gürr T.Gravitationsfeldbestimmung aus der Analyse kurzer Bahnboegen am Beispiel der Satellitenmissionen CHAMP und GRACE.Dissertation at the Institute of Theoretical Geodesy,University Bonn,2006.
  • 8Mayer-Gürr T,Eicker A,Kurtenbach E,et al.ITG-GRACE:Global Static and Temporal Gravity Field Models from GRACE Data.Earth and Environmental Science,2010,(Part 2):159-168.
  • 9Pail R,Bruinsma S,Migliaccio F,et al.First GOCE gravity field models derived by three different approaches.Journal of Geodesy,2011,85(11):819-843.
  • 10沈云中.应用CHAMP卫星星历精化地球重力场模型的研究.武汉:中国科学院测量与地球物理研究所,2000.

二级参考文献11

  • 1王兴涛,夏哲仁,石磐,孙中苗.航空重力测量数据向下延拓方法比较[J].地球物理学报,2004,47(6):1017-1022. 被引量:84
  • 2宁津生,汪海洪,罗志才.基于多尺度边缘约束的重力场信号的向下延拓[J].地球物理学报,2005,48(1):63-68. 被引量:45
  • 3Baker R M L. Orbit determination from range and range-rate data.Semi-Annual Meeting of the American Rocket Society. Los Angeles:ARS Preprint, 1960.1220 ~ 1260.
  • 4Kaula W M. Inference of variations in gravity field from satellite to satellite range. Journal of Geophysical Research, 1983, 88:8345 ~8350.
  • 5Douglas B C, Goad C C, Morrison. Determination of the geopotential from satellite-to-satellite tracking data. Journal of Geophysical Research, 1980, 85 ( B 10 ): 5471 ~ 5480.
  • 6Wager C A. Direct determination of gravitational harmonics from low-low GRAVSAT data. Journal of Geophysical Research, 1983,88(10): 10309 ~ 10321.
  • 7Gerlach Ch, Foldvary L, Svehla D, et al. A CHAMP-only gravity field model from kinematic orbits using the energy integral.Geophysical Research Letters, 2003, 30(20): 2037 ~ 2040.
  • 8Tapley B D, Chambers D P, Bettadpur S, et al. Large scale ocean circulation from the GRACE GGM01 Geoid. Geophysical Research Letters, 2003, 30(22): 2163 ~ 2166.
  • 9Lemoine F G, Kenyon S C, Trimmer R G, et al. The development of the joint NASA GSFC and NIMA geopotential model EGM96.NASA Goddard Space Flight Center, Greenbelt, USA, 1998.
  • 10沈云中 许厚泽.卫-卫跟踪重力卫星测量模式的模拟与精度分析[A].朱耀仲主编.大地测量与地球动力学进展[C].武汉:湖北科学技术出版社,2004.211-218.

共引文献26

同被引文献120

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部