期刊文献+

外部流体作用下管道输送流固耦合效应偏移分析 被引量:5

Pipe's offset analysis for a pipeline transporting under action of external fluid considering fluid-solid coupled effects
下载PDF
导出
摘要 采用数值方法分析管道结构-外部流体相互耦合效应对管道输送过程中管道自由端偏移的影响。调查中充分考虑管道结构-流体耦合效应,流体域与结构域通过拉格朗日-欧拉公式表述。以垂直悬臂提升管道为研究对象,应用有限元软件ADINA对其外部流体-管道结构进行流固耦合特性研究。研究结果表明:①管道上端不论是采取固接还是铰接支撑,外部流场以不同速度冲击管道时,整个管道偏移变化不明显,在同一流速下对管道偏移变化较为显著的地方集中在管道自由端,最大偏移则出现在自由端顶点处;②管道上端无论是固结还是铰接,随着管外流体速度增加,X方向最大偏移的增量总是小于Y方向最大偏移的增量;而X方向的最小偏移变化量则大于Y方向相应偏移;③同一流速冲击下,固结时Y方向的最小偏移略大于铰接时Y方向的最小偏移,且两者在外部流速为0.3 m/s时出现极大值。 The effects of a pipeline-external fluid interaction on the offset of the free end of the pipe was analyzed with numerical methods,considering a fully coupled fluid-structure interaction(FSI).The fluid domain and structural domain were described with an arbitrary-Lagrangian-Eulerian(ALE) formulation.A vertical cantilevered lifting pipe was taken as a study object.Its fluid-solid coupled characteristics were studied with the FE software ADINA.The results showed that either its upper end is fixed or hinged,the pipe's offset variation is not obvious when the external fluid impacts the piple at different speeds,the maximum offset appears at the free end;with increase in the speed of the external fluid,the maximum offset variation in X-direction is always less than that in Y-direction,the minimum offset variation in X-direction is larger than that in Y-direction;under the impact of the external fluid with the same speed,the minimum offset in Y-direction with the upper end fixed is slightly larger than that with the upper end hinged,both of them become greater when the external fluid speed is 0.3m/sec.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第13期142-146,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(50875081)资助
关键词 流固耦合作用 计算流体动力学 提升管道 偏移 fluid-structure interaction computational fluid dynamics lifting pipe offset
  • 相关文献

参考文献16

  • 1Heil M. An efficient solver for the fully coupled solution of large-offset fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004,193: 1 - 23.
  • 2Bathe K J,Zhang H. Finite element developments for general fluid flows with structural interactions [ J ]. International Journal for Numerical Methods in Engineering, 2004, 60: 213 - 232.
  • 3Hron J,Turek S. A monolithic FEM/muhigrid solver for ALE formulation of fluid-structure interaction with application in biomechanics. Lecture Notes in Computational Science and Engineering [ J ]. Fluid Structure Interaction-Modelling, Simulation, Optimisation. Springer-Verlag,2006 : 146 - 170.
  • 4Degroote J, Bathe K J, Vierendeels J. Performance of a new partitioned procedure versus a monolithic procedure in fluid- structure interaction [ J ]. Computers and Structures, 2009, 87 : 793.
  • 5Vierendeels J, Lanoye L, Degroote J, et al. Implicit coupling of partitioned fluid-structure interaction problems with reduced order models [ J ]. Computers and Structures, 2007, 85 (11 -14) : 970 -976.
  • 6Ktittler U, Wall W. Fixed-point fluid-structure interaction solvers with dynamic relaxation [ J ]. Computational Mechanics,2008,43 ( 1 ) : 61 -72.
  • 7Degroote J, Bruggeman P, Haeherman R, et al. Stability of a coupling technique for partitioned solvers in FSI applications [J]. Computers and Structures, 2008, 86 (23 - 24) : 2224 - 2234.
  • 8Jaiman R, Jiao X, Geubelle P, et al. Conservative load transfer along curved fluid-solid interface with non-matching meshes [ J ]. Journal of Computational Physics, 2006, 218 ( 1 ) : 372 - 397.
  • 9Vierendeels J, Dumont K, Dick E, et al. Analysis and stabilization of fluid-structure interaction algorithm for rigid- body motion [ J ]. AIAA Journal, 2005, 43 ( 12 ) : 2549 - 2557.
  • 10Vierendeels J, Lanoye L, Degroote J, et al. Implicit coupling of partitioned fluid-structure interaction problems with reduced order models [ J]. Computers and Structures,2007, 85 (11 - 14) : 970 -976.

二级参考文献31

  • 1党锡淇,黄幼玲.工程中的管道振动问题[J].力学与实践,1993,15(4):9-16. 被引量:84
  • 2周云,刘季.管道振动及其减振技术[J].哈尔滨建筑工程学院学报,1994,27(5):108-114. 被引量:33
  • 3Paidoussis M P.Flow-induced Instability of Cylindrical Structures[J].Applied Mechanics Review,1987,40(2):163-175.
  • 4Paidoussis M P.Pipes Conveying Fluid:A model Dynamical Problem[J].Journal of Fluids and Structures,1993,7:137-204.
  • 5Morton K W,Mayers D F.偏微分方程数值解(第2版)[M].李治平,门大力,许现民,等译,北京:人民邮电出版社,2006.
  • 6Lavooij C S W,Tijsseling A S.Fluid-structure Interaction in Liquid-filled Piping Systems[J].Journal of Fluids and Structure,1991,5:573-595.
  • 7Tijsseling A S.Water hammer with fluid-structure interaction in thick-walled pipe[J].Computers and Structures,2007,85:844-851.
  • 8Walker J S,Phillips J W.Pulse propagation in fluid-filled tubes[J].ASME,Journal of Applied Mechanics,March 1977:31-35.
  • 9Valentin R A,Phillips J W,Walker J S.Reflection and transmission of fluid transients at an elbow[R].Transactions of SMiRT 5,1979,Paper B:2-6.
  • 10Hu C K,Phillips J W.Pulse propagation in fluid-filled elastic curved tubes[J].ASME Journal of Pressure Vessel Technology 103:43-49.

共引文献63

同被引文献42

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部