期刊文献+

动态粗集理论在决策树算法中的应用研究 被引量:3

RESEARCH ON APPLICATION OF DYNAMIC ROUGH SET THEORY IN DECISION TREE ALGORITHM
下载PDF
导出
摘要 基于动态粗集理论,提出一种改进的动态粗集决策树算法。改进后的算法对每一属性计算数据对象迁移系数的和,值最大的属性成为决策树的根;在对决策树分叉时,给每一决策类别的数据对象集合计算从根到分叉属性所构成的属性集的膨胀度,值大的属性构成分支结点。算法在UCI机器学习数据库原始数据集及其噪音数据集上的实验结果表明,该算法构造的决策树在规模与分类准确率上均优于ID3算法及C4.5算法。 Based on the theory of dynamic rough set, we present an improved dynamic rough set decision tree algorithm. The improved algorithm calculates for each attribute the sum of transition coefficient of data object and the attribute with maximum sum value will be chosen as the root of the decision tree. When bifurcating the decision tree, the algorithm calculates for the collection of data objects in each decision category the expansion degree of the attributes set consisting the attributes from root to branches, and the attributes with maximum expansion degree will be select as the branch nodes. The experimental results of the algorithm on primary dataset of UCI machine learning database and on generated data sets with noise points proves that the decision tree constructed by this algorithm achieves better classification accuracy and smaller scale than those of ID3 and CA. 5 algorithms.
作者 张军 李鹏
出处 《计算机应用与软件》 CSCD 北大核心 2013年第8期99-101,共3页 Computer Applications and Software
基金 教育部人文社会科学研究一般项目青年基金项目(11YJC870035) 山东省社会科学规划青年基金项目(11DGLJ14)
关键词 动态粗集 决策树 迁移系数 属性 Dynamic rough set Decision tree Transition coefficient Attribute
  • 相关文献

参考文献12

  • 1Quinlan J R.Introduction of decision trees [J].Machine Learning,1986(1):81-106.
  • 2Brydon M,Gemino A.Classification trees and decision analytic Feedforward control:A case study from the video game industry [J].DataMining and Knowledge Discovery,2008,17(2):317-342.
  • 3陆秋,程小辉.基于属性相似度的决策树算法[J].计算机工程,2009,35(6):82-84. 被引量:11
  • 4孙爱东,朱梅阶,涂淑琴.基于属性值的ID3算法改进[J].计算机工程与设计,2008,29(12):3011-3012. 被引量:26
  • 5Pawlak Z.Rough sets [J].International Journal of Computer and Infor-mation Sciences,1982,11:341-356.
  • 6Mcclean S,Scotney B,Shapcott M.Aggregation of imprecise and uncer-tain information in databases [J].IEEE Transactions on Knowledgeand Data Engineering,2001,13(6):902-912.
  • 7Wang Cuiru,Ou Fang.An Algorithm for decision tree construction based onrough set theory [.J] ? International Conference on Computer Science andInformation Technology,2(X)8:295-298.
  • 8Eric C C,Sang T,Chen Degang,et al.Attributes reduction using fuzzyrough sets[I].IEEE Transaction on Fuzzy Systems,2005,13(3),343-361.
  • 9Huang Sunliang,Shi Kaiquan.Rough law F-decomposing and its two-dimensional measurement [J].The Journal of Fuzzy Mathematics2010,4:330-336.
  • 10Shi Kaiquan.Two direction S-rough sets [J].The Journal of FuzzyMathematics,2004,12:36-42.

二级参考文献25

共引文献35

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部