期刊文献+

基于对称非负矩阵分解的人脸识别算法 被引量:1

FACE RECOGNITION ALGORITHM BASED ON SYMMETRICAL NMF
下载PDF
导出
摘要 提出一种利用镜像偶特征改造NMF(Non-negative Matrix Factorization)基图像并进行局部特征提取的人脸识别算法。首先获取镜像偶特征并进行二次Haar小波分解,得到重构人脸样本图像。然后利用NMF分解得到一组在垂直方向对称的基图像,由它们组成基矩阵并对它们正交规范化。改造后的基图像符合人脸对称的生理特性,使得NMF基矩阵更加适用于人脸特征提取。在含有姿态变化和不均匀光照样本的Yale人脸数据库上取得了较好的识别效果。 This paper proposes an algorithm for face recognition by reforming the base image of NMF with even mirror-like features and extracting the local feature. First, the even mirror-like feature is obtained and followed by the secondary Haar wavelet decomposition, and the reconstructed face sample image is derived. Then, by employing NMF method a set of basic images symmetrical in vertical direction are obtained, and they are used to form the base matrix and to be performed the orthogonal normalisation. The transformed base image meets the physiological characteristic of facial symmetry, this makes the NMF base matrix more suitable for face feature extraction. The algorithm achieves pretty good recognition effect on Yale face database with the samples of posture changes and uneven illumination.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第8期148-150,183,共4页 Computer Applications and Software
基金 河北省自然科学基金项目(F2009000853)
关键词 人脸识别 非负矩阵分解 对称性 特征提取 镜像 Face recognition Non-negative matrix factorisation(NMF) Symmetry Feature extraction Mirror-like
  • 相关文献

参考文献8

二级参考文献54

共引文献21

同被引文献44

  • 1余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 2ALBRIGHT R, COX J, DULING D, et al. 2006. Algorithms, ini- tializations, and convergence for the nonnegative matrix fac- torization: NCSU Technical Report Math 81706 [ R]. Raleigh, North Carolina State, USA : NCSU.
  • 3BROWN L G. 1992. A survey of image registration techniques [ J] .ACM Computing Surveys,24(4) :325-376.
  • 4BLONDEL V, HO N D, VAN DOOREN P.2007. Algorithms for weighted nonnegative matrix factorizations[ J].Submitted for Publication, (16) : 3-15.
  • 5Blrlq'ORF V, RECHT B, RE C, et al.2012.Factoring nonnegative matrices with linear programs[ J] .Advances in Neural Infor- mation Processing Systems, 25 : 1223-1231.
  • 6CARMONA-SAEZ P, PASCUAL-MARQUI R D, TIRADO F, et al.2006.Biclustering of gene expression data by non-smooth non-negative matrix factorization [ J ]. BMC Bioinformatics, 7 (1) :78.
  • 7FENG TAO, LI STAN, SHUM HEUNGYEUNG, et al.2002. Localnon-negative matrix factorization as a visual representation [ C ]//Proceedings of the 2nd IEEE International Conference on Development and Learning.Cambridge, Mas- sachusetts, USA: IEEE, 178-183.
  • 8GUILLAMET D,BRESSAN M,VITRIA J.2001.A weighted non- negative matrix factorization for local representations [ C ]// Proceedings of 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA : IEEE Computer Society, 1:942-947.
  • 9GUILLAMET D, VITRIA J, SCHIELE B. 2003. Introducing a weighted non-negative matrix factorization for image classi- fication [ J ]. Pattern Recognition Letters, 24 ( 14 ) : 2447 - 2454.
  • 10GAUJOUX R, SEOIGHE C.2010.A flexible R package for non- negative matrix factorization [ J ]. BMC Bioinformaties, 11 (1) :367.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部