期刊文献+

一种改进的图像分割活动轮廓模型 被引量:2

AN IMPROVED IMAGE SEGMENTATION ACTIVE CONTOUR MODEL
下载PDF
导出
摘要 C-V模型具有计算复杂度低、对初始化和噪声不敏感等优点,在处理图像的时候总是从全局的角度去考虑图像区域的灰度变化,从而导致难以分割灰度不均的图像。局部二元拟合(LBF)模型在处理灰度不均匀的图像分割方面有很大优势,但是LBF模型存在依赖初始轮廓大小、位置等缺点。针对C-V模型不能分割灰度不均图像和LBF模型敏感于轮廓初始化的问题,给出一个用偏微分方程表示的新的融合局部(LBF模型)和全局信息(改进的C-V模型)的活动轮廓模型。实践结果表明,新的模型对初始轮廓的敏感性低,能分割灰度不均的图像,且优于C-V模型,其分割效率明显高于LBF模型。 Chan-Vese (C-V) model has the advantages of low computational complexity and insensitive to initialisation and noise, however when processing the image, it always deals with grey change of image region from global perspective, thus leads to difficult in segmenting the images with intensity inhomogeneity. Local binary fitting (LBF) model has great advantage in dealing with the segmentation of images with uneven greyscale, but it has the shortcomings of relying on the initial size and position of contours. In light of the problems that the C-V model cannot segment the image with intensity inhomogeneity and the LBF model is sensitive to contour initialisation, we propose a new active contour model expressed with a partial differential equation, which integrates both the local (LBF model) and global (improved C-V model) information. Experimental results show that the new model is less sensitive to initial contour so is able to segment the image with intensity inhomogeneity, and is superior to C-V model, it is also clearly better than LBF in segmentation efficiency.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第8期184-186,196,共4页 Computer Applications and Software
基金 云南省教育厅项目(2011Y010)
关键词 图像分割 活动轮廓模型 C-V模型 LBF模型 偏微分方程 Image segmentation Active contour model C-V Model LBF model Partial differential equation
  • 相关文献

参考文献15

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:active contour models [J].International Journal of Computer Vision,1988,1(4):321-33l.
  • 2Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].Interna-tional Journal of Computer Vision,1997,22(1):61-79.
  • 3Li Chunming,Xu Chenyang,Gui Changfeng,et al.Level setevolutionwithout re-initialization:a new variational formulation [C]//Proceed-ings of IEEE Conference on Computer Vision and Pattern Recognition.San Diego,California,USA; IEEE,2005:430-436.
  • 4Zhu Guopu,Zhang Shuqun,Zeng Qingshuang,et a].Boundarybased im-age segmentation using binary level set method [J].Optical Engineer-ing,2007,46(5):1-3.
  • 5Chan T F,Vese L A.Active Contours Without Edges [J].IEEETransactions on Image Processing,2001,10(2):266-277.
  • 6Zhang Kaihua,Zhang Lei,Song Huihui,et al.Active Contours withSelective Local or Global Segmentation:A New Formulation and LevelSet Method [J].Image and Vision Computing,2010,28(4):668-676.
  • 7Ii Chunming,Kao Chiuyen,Gore J C,et al.Minimization of Region-scalable Fitting Energy for Image Segmentation [J].IEEE Transactionson Image Processing,2008,17(10):1940-1949.
  • 8Li Chunming,Kao Chiuyen,Gore J,et al.Implicit active contours driv-en by local binary fitting energy [C] //Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition.Minneapolis,MN,USA:IEEE,2007:1-7.
  • 9原野,何传江.LBF活动轮廓模型的改进[J].计算机工程与应用,2009,45(15):177-179. 被引量:19
  • 10杨勇,马志明,徐春.LCV模型在医学图像分割中的应用[J].计算机工程,2010,36(10):184-186. 被引量:16

二级参考文献67

  • 1闵莉,李小毛,唐延东.一种改进的无需水平集重新初始化的C-V主动轮廓模型(英文)[J].光电工程,2006,33(9):52-58. 被引量:12
  • 2Chan T, Vese L. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001, 10(2): 266-277.
  • 3WANG Wen-yu. An Active Contour Model For Selective Segmentation [C]// International Conference on Computer Graphics, Imaging and Vision: New Trends. Washington, DC, USA: IEEE Press, 2005: 259-260.
  • 4Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a new variational formulation [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Press, 2005, 1: 430-436.
  • 5Li Chnnming, Kao Chiu-Yen, Gore J C, et al. Implicit Active Contours Driven by Local Binary Fitting Energy [C]//IEEE Conferenee on Computer Vision and Pattern Recognition (CVPR), Minnesota, USA: IEEE Press, 2007: 1-7.
  • 6WANG Yuping, DANG Chuangyin. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin- Squares [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(5): 579-595.
  • 7Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. Int'l J. Comp. Vis, 1997, 22: 61-79.
  • 8LIU Huafeng, CHEN Yunmei, CHEN Wufan. Neighborhood aided implicit active contours [C]// IEEE Conference on Computer Vision and Pattern Recognotion (CVPR). New York, USA: IEEE Press, 2006, 1: 841-848.
  • 9Wong W C K, Chung A C S. Bayesian image segmentation using local iso-intensity structural orientation [J]. IEEE Transaction on Image Processing, 2005, 14(10): 1512-1523.
  • 10Du X,Bui T D.A new model for image segmentation [J].IEEE Signal Processing Letters, 2008,15 : 182-185.

共引文献68

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部