期刊文献+

基于改进AdaBoost的快速人脸检测算法 被引量:9

RAPID FACE DETECTION ALGORITHM BASED ON IMPROVED ADABOOST
下载PDF
导出
摘要 针对传统AdaBoost用于人脸检测时需要的特征数目多,检测速度慢的问题,提出一种基于改进AdaBoost的快速人脸检测算法。一方面,提出使用双阈值的弱分类器代替传统的单阈值弱分类器,提高单个特征的分类能力;另一方面,引入信息熵作为特征相关度的度量方法,在特征选择时每一轮循环中只选择与已选出特征相关度较低的特征,从而减少特征之间的冗余信息。实验结果表明,相对于传统AdaBoost人脸检测算法,该方法使用较少的特征即可达到较高的检测准确率,检测速度得到显著提高。 When applying in face detection, traditional AdaBoost has the problems of asking many feature numbers and slow speed in detection. In light of this, a rapid face detection algorithm based on improved AdaBoost is proposed. On the one'hand, dual-threshold weak classifiers are used to replace the traditional single-threshold weak classifier and this has improved the classification capability on single feature. On the other hand, the information entropy is introduced as the metric means of feature relevance, during the feature selection, in each round of cycle only those features with low feature relevance to the selected features will be chosen, therefore the redundant information between the features is reduced. Experimental results show that compared with traditional AdaBoost face detection algorithm, this one can achieve higher detection correct rate using less features, and the detection speed is magnificently enhanced.
作者 房宜汕
出处 《计算机应用与软件》 CSCD 北大核心 2013年第8期271-274,共4页 Computer Applications and Software
基金 梅州市科学技术局 嘉应学院联合自然科学研究项目(2010KJA24)
关键词 人脸检测 ADABOOST算法 特征选择 特征相关度 信息熵 Face detection AdaBoost algorithm Feature selection Feature relevance Information entropy
  • 相关文献

参考文献9

  • 1孙宁,邹采荣,赵力.人脸检测综述[J].电路与系统学报,2006,11(6):101-108. 被引量:39
  • 2Xiao R,L Im J,Zhang H J.Robust multipose face detection in images[J].IEEE Trans Circuits and System for Video Technology,2004,14(1):31-41.
  • 3梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 4Viola P,Jones M.Robust real time object detection [C]//Proceedingsof 2nd international workshop on statistical and computational theoriesof vision,2001.
  • 5刘天键.基于熵的特征选择的AdaBoost改进算法[J].闽江学院学报,2009,30(2):60-64. 被引量:3
  • 6Liu Rongye.An Unsupervised Feature Selection Algorithm:LaplacianScore Combined with Distance-Based Entropy Measure [C] //Third In-ternational Symposium on Intelligent Information Technology Applica-tion,2009.Nov.21-22 2009:65-68.
  • 7Freund Y.Boosting a weak learning algorithm by majority [J].Informa-tion and Computation,1995,141(2):256-285.
  • 8Karuppiah D,Silapachote P,Hanson A.Feature selection using Ada-boost for face expression recognition [C] //Proceeding of the Interna-tional Conference on Visualization,Imaging,and Image Processing,Marbella,Spain,Sept.2004:84-89.
  • 9Nikos V,Aristidis L.A Greedy EM Algorithm for Gaussian MixtureLeaming[J].Neural Processing Letters,2002,15:77-87.

二级参考文献113

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献381

同被引文献84

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部