期刊文献+

差分进化算法马尔可夫链模型及收敛性分析 被引量:2

Analysis of Differential Evolution's Markov Chain Model and Convergence
下载PDF
导出
摘要 差分进化算法是一种基于种群差异的优化算法,主要应用于解决连续空间的优化问题。目前,研究人员主要在算法的改进和应用方面研究差分进化算法,很少从理论角度对其进行研究。为了分析差分进化算法的收敛性,定义优化个体、种群的状态转移,并提出种群的最优状态集合。根据差分进化算法的操作算子计算出个体的状态迁移概率,并证明种群状态序列是有限齐次马尔可夫链,进而建立差分进化算法的马尔可夫链模型;最后,证明差分进化算法无法保证全局收敛。理论研究结果表明,适当保证种群的多样性能够提高差分进化算法的性能。 As a modern optimization algorithm, differential evolution algorithm which is based on the individual differential reconstruction idea is designed for the global continuous optimization problem. Up to now ,the improvement and application of the algorithm are mainly focused by researchers but theoretical analysis of the algorithm is seldom taken into account. In order to analyze the convergence of the al- gorithm, the concepts of state transition for individual and population are defined and the optimal state set of population is proposed. The individual state transition probability is computed according to the operators of differential evolution algorithm. The state sequence of pop- ulation has been proved to be Finite Nonhomogeneous Markov chain and the Markov chain model of differential evolution is proposed. At last,the theory analysis of the differential evolution demonstrates that it is not able to guarantee the global convergence. The result of the theory research shows that keeping the population diversity will improve the performance of the algorithm.
出处 《计算机技术与发展》 2013年第8期62-65,共4页 Computer Technology and Development
基金 江苏省科技支撑计划(BE2012112) 淮安市科技支撑计划(工业)项目(HAG2011044 HAG2011045)
关键词 差分进化 马尔可夫链 收敛性分析 全局收敛 局部收敛 differential evolution Markov chain convergence analysis global convergence local convergence
  • 相关文献

参考文献9

  • 1Store R, Price K. Differential evolution - a simple and effi- cient heuristic for global optimization over continuous spaces [ J]. Global Optimization, 1997,11 (4) :341-359.
  • 2Paterlinia S, Krinkb T. Differential evolution and particle swarm optimization in partitional clustering[ J ]. Computational Statistics & Data Analysis,2006,50 (5) : 1220-1247.
  • 3Mandal K K,Chakraborty N. Short-term combined economic emission scheduling of hydrothermal power systems with cas- caded reservoirs using differential evolution [ J ]. Energy Con- version and Management,2009,50 ( 1 ) :97-104.
  • 4Yuan X H, Wang L, Zhang Y C, et al. A hybrid differential e- volution method for dynamic economic dispatch with valve- point effects [ J ]. Expert System with Application, 2009,36 (2) :4042-4048.
  • 5Pan Q K, Wang L, Qian B. A novel differential evolution algo- rithm for bi-criteria no-wait flow shop scheduling problems [ J 1. Computer & Operations Research, 2009,36 ( 8 ) : 2498 - 2511.
  • 6包融,王伟业,顾汉杰,徐永安.订单可分的协作计划模型及其进化算法[J].计算机技术与发展,2010,20(10):58-61. 被引量:2
  • 7Fan H Y, Lampinen J. A trigonometric mutation operation to differential evolution [ J]. Journal of global optimization,2003, 27(1) :105-129.
  • 8Lakshminarasimman L,Suhramanian S. A m:lified hybrid dif- ferential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs [ J ]. Energy Conver- sion and Management,2009,49(10) :2513-2521.
  • 9胡春平,颜学峰.An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation[J].Chinese Journal of Chemical Engineering,2009,17(2):232-240. 被引量:12

二级参考文献10

共引文献12

同被引文献16

  • 1Zhang Y J, Li H B. Cluster-based population initialization for differential evolution frameworks [ J ]. Procedia Environmental Sciences ,2011,10( 1 ) :517-522.
  • 2百度文库.差分进化算法[EB/OL].2015-03一01.http://wenku.baidu.corn/link?url=k9NS6nEw09MKfwhh5WhPd5VnFoLzkEqjJwxDsM67w2INu3Vwhzmrhct]Es31M3F3R_fTXTYPoLTBiLNBZccE313MdP4QvdO-s7dRyVXgp9a.
  • 3衡量试卷的标准.衡量试卷质量的四大指标[EB/OL].2015-03-01.http://www.jxteacher.com/lcez/col-umn72487/a2a4fffO-.00bc-.454c-.bat9-005932658190.html.
  • 4Poikolainen I, Neri F, Caraffini F. Cluster-based population initialization for differential evolution frameworks[ J ~. Informa- tion Sciences, 2015,297 ( 10 ) : 216 -235.
  • 5Ayala H V H, dos Samos F M, Mariani V C, et al. Image thresholding segmentation based on a novel beta differential e- volution approach [ J ]. Expert Systems with Applications, 2015,42(4) :2136-2142.
  • 6Zamuda A, Brest J. Vectorized procedural models for animated trees reconstruction using differential evolution [ J ]. Informa- tion Sciences ,2014,278 (10) :1-21.
  • 7Lu Xiaofen, Tang Ke, Sendhoff B. A new self- adaptation scheme for differential evolution [ J ]. Neurocomputing, 2014, 146(25) :2-16.
  • 8Sharma H, Bansal J C,Arya K V. Serf balanced differential e- volution [ J ]. Journal of Computational Science, 2014,5 ( 2 ) : 312-323.
  • 9王凤蕊,王文宏,潘全科.基于差分进化算法的智能组卷研究[J].计算机工程与设计,2009,30(8):1974-1976. 被引量:7
  • 10雷茜,刘淳安.智能优化的英语试题库组卷策略研究[J].科学技术与工程,2009,9(24):7500-7502. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部