摘要
考虑一种改进的极大似然估计算法估计一维利率期限结构模型的未知参数,该方法首先利用Crank-Nicolson差分法求解与该扩散模型相关联的偏微分方程(PDE),获得累积分布函数,然后利用数值微分得到转移密度函数的近似值。数值模拟实验结果表明,当取较小空间步长时,该改进估计法比Euler法具有更高的效率,并考察该改进估计法在中国银行间同业拆借利率的实证分析,实证结果表明,在所考虑的样本区间内,中国利率的长期水平值是0.025 1,且中国货币市场利率粘性系数的值接近于0.5。
Considering an improved maximum likelihood estimation algorithm for estimating unknown parameter of one dimensional term structure of interest rates models. Crank--Nicolson difference scheme is provided to obtain the numerical solution of the corresponding Kolmogorov PDEs, from which the transitional cumulative distribution function (CDF) is obtained. Numerical differentiation of the transitional CDF follows the transitional probability density function (PDF). The estimation results of numerical test show that the improved estimation algorithm perform better than Euler method under small spatial step. Meanwhile, the improved estimation method is used to estimate the model of the Chinese interbank offer rate data, the results show that the long term of mean--reverting value is 0. 0251 and the viscosity coefficient is about 0. 5.
出处
《统计与信息论坛》
CSSCI
2013年第8期26-30,共5页
Journal of Statistics and Information
基金
中央高校基本科研业务费专项资金<倒向随机微分方程及金融应用>(2011083)
研究生教育教学理论研究项目<应用随机过程实践性教学的探究>(2011JG10)
教育部留学回国人员科研启动基金资助项目<不带测量误差的一类随机微分方程未知参数的估计>(教外司留2013693)