期刊文献+

基于NSGA-Ⅱ算法的PSS多目标优化设计

Multi-objective Optimal Design of Power System Stabilizer Based on NSGA-Ⅱ Algorithm
下载PDF
导出
摘要 电力系统稳定器(PSS)能够很好地抑制电力系统低频振荡,其参数的整定尤为重要。一般处理方法是将系统状态矩阵特征值实部和阻尼比分别加权转换成单目标问题,进而用优化算法对PSS控制器参数进行优化,而权重的选取对参数影响极大。以特征值实部和阻尼比作为两个目标,用NSGA-Ⅱ多目标进化算法优化处理,最后与传统的遗传算法相比较。仿真结果表明,采用NSGA-Ⅱ算法设计的PSS控制器,可以有效地阻尼电力系统低频振荡。 Power system stabilizer (PSS) can inhibit the low -frequency oscillation well and the selection of its parameters is particularly important. Generally, both the real part and damping ratio of the eigenvalue of the system state matrix are weighted and then it is transformed into a single objective problem to design the controller parameters of PSS using optimization algo- rithm, but the parameters are influenced greatly by the selection of the weight. The real part and damping ratio of the eigenval- ue are considered as two objectives to optimize the parameters using NSGA -Ⅱ multi -objective evolutionary algorithm. Com- paring with the traditional methods, the simulation results show that the PSS controller designed by NSGA - Ⅱ algorithm can damp the low - frequency oscillation of power system effectively.
出处 《四川电力技术》 2013年第4期55-58,共4页 Sichuan Electric Power Technology
关键词 低频振动 PSS 特征值 阻尼比 NSGA-Ⅱ算法 low - frequency oscillation power system stabilizer (PSS) eigenvalue damping ratio NSGA -Ⅱ algorithm
  • 相关文献

参考文献4

  • 1Prabha Kundur. Power System Stability and Control[ M ]. NewYork : McGraw - Hill, 1994.
  • 2关志华.非支配排序遗传算法(NSGA)算子分析[J].管理工程学报,2004,18(1):56-60. 被引量:20
  • 3Milad Khaleghi , Mohsen Mohammadian. Design of Two Power System Stabilizers Coordinately Based on Strength Pareto Evolutionary Algorithm [ C ]. IEEE Conference on Industrial Electronics and Applications, 2009:1527 - 1532.
  • 4Y. L. Abdel - Magid. Optimal Multi - objective Design of Robust Power System Stabilizers Using Genetic Algorithms [ J 1- IEEE Trans on Power Systems, 2003, 18 ( 3 ) : 1125 - 1132.

二级参考文献16

  • 1J.D. Schaffer. Some experiments in machine learning using vector evaluated genetic algorithms: [Doctoral Dissertation]. Nashville TN:Vanderbilt University, 1984.
  • 2D.E. Goldberg. Genetic algorithms for search, optimization, and machine learning[M]. Reading Massachusetts: Addison-Wesley Publishing Compnay,1989.
  • 3C.M. Fonseca, P. J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization[A].Proceedings of the Fifth International Conference on Genetic Algorithms[C]. San Mateo California: University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, 1993,416 ~ 423.
  • 4J. Horn, N. Nafploitis, D. E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization[A]. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence[C]. Piscataway New Jersey:IEEE Service Center,1994. vol.1,82~87.
  • 5A.G. Kunha, P. Oliveira, J. A. Covas. (1997). Use of genetic algorithms in multicriteria optimization to solve industrial problems[A]. In: Thomas Back. Proceedings of the Seventh International Conference on Genetic Algorithms[C]. San Mateo California:Michigan State University, Morgan kaufmann Publishers, 1997,682 ~688.
  • 6K. Mitra, K. Deb, S. K. Gupta. Multiobjective dynamic optimization of an industrial Nylon 6 semibatch reactor using genetic algorithms[J].Journal of Applied Polymer Science, 1998,69(1):69 ~ 87.
  • 7C.M. Fonseca, P. J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part Ⅱ:Application example[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1998,28(1):38 ~ 47.
  • 8E. Zitzler, L. Thiele. Multiobjective optimization using evolutionary algorithms-A comparative case study[A]. In: A. E. Eiben. Parallel Problem Solving from Nature V[C]. Amsterdam: Springer-Verlag,1998,292 ~ 301.
  • 9D.A. Van Veldhuizen,G. B. Lamont. Evolutionary Computation and Convergence to a Pareto Front[A]. In: J. R. Koza. Late Breaking Papers at the Genetic Programming 1998 Conference[C]. Stanford University California: Stanford University Bookstore, 1998, 221~228.
  • 10N. Srinivas, K. Deb. Multiobective optimization using nondominated sorting in genetic algorithms[R]. Technical report, Department of Mechanical Engineering, Indian Institute of Technology, Kanput,India, 1993.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部