期刊文献+

基于随机模拟与g-h分布的VaR计算方法 被引量:2

下载PDF
导出
摘要 在金融风险管理中经常需要对极端值进行统计分析,对变量极端值的分布拟合中g-h分布模拟法可以取得较好的效果。但该方法中参数的拟合一般是用分位数进行的,虽然很简便,却很难做到使四阶矩同时与目标分布一致。改进后的基于随机模拟的g-h分布参数拟合法已经被证明可以很好的解决这一问题。文章将这种改进后的方法用于VaR的计算研究,并通过对股票市场进行实证分析,证明该方法的对VaR的拟合效果优于历史模拟法、正态分布法,且比极值理论法更加方便、灵活和准确。
作者 钟波 山宇
出处 《统计与决策》 CSSCI 北大核心 2013年第15期8-11,共4页 Statistics & Decision
  • 相关文献

参考文献9

  • 1Michel Crouhy,Dan Galai,Robert Mark.风险管理[M].曾刚,等,译.北京:中国财政经济出版社,2005.
  • 2李贺,叶中行.极值理论与VaR计算[J].宁夏大学学报(自然科学版),2007,28(2):124-127. 被引量:7
  • 3吴建刚.一种新的极值分布拟合方法:基于g-h分布的拟合法[J].统计与决策,2011.(8).
  • 4PhilippeJorion.风险价值VAR[M].北京:中信出版社.2005.
  • 5Hoaglin, D. C.G-and-h-Distributlons[J].Encyclopedia of Statistical Sciences,1983,3.
  • 6Martinez, J., Iglewicz, B.Some Properties of the Tukey g and h Family of Distributions[J].Communications in Statistics- Theory and Meth- ods,1984,13.
  • 7Badrinath G , Chatterjee Sangit . A Data-analytic look at Skewness and Elongation in Common-stock-return Distributions[J]. Journal of Business dr Economic Statistics,1991,9(2).
  • 8Doowoo Nam . Value at Risk: a Quantile-based Distribution Ap- proach for Incorporating Skewness and Fattailedncss[D]. The Universi- ty of Alabama, 2001.
  • 9潘志斌,田澎,朱海霞.一种新型的VaR计算方法:g-h VaR法[J].系统工程理论方法应用,2006,15(3):247-250. 被引量:11

二级参考文献17

  • 1Kon S J Models of stock returns-a comparison[J].Journal of Finance,1984 39:147-165.
  • 2Brian Gray J,French Dan W.Empirical comparisons of distributional models for stock index returns[J].Journal of Business Finance & Accounting,1990,17(3):451-459.
  • 3Balanda Kevin P,Macgillivray H L.Kurtosis:A critical review[J].The American Statistican,May 1988,42(2):111-119.
  • 4Hoaglin David C,Frederick Mosteller,Tukey John W.Exploring data tables,trends,and shapes[M].New York:John Wiley & Sons,1985:417-460.
  • 5Badrinath S.G,Chatterjee Sangit.On measuring skewness and elongation in common stock return distributions:The case of the market index[J].Journal of Business,1988,61(4):451-472.
  • 6Badrinath G,Chatterjee Sangit.A data-analytic look at skewness and elongation in common-stock-return distributions[J].Journal of Business & Economic Statistics.April,1991,9(2):223-233.
  • 7Doowoo Nam.Value at risk:A quantile-based distribution approach for incorporating skewness and fat -tailedness[D].The University of Alabama,2001.
  • 8Kupiec P.Techniques for verifying the accuracy of risk measurement models[J].Journal of Derivatives,1995,3:73-84.
  • 9McNeil A,FREY R.Estimation of tail-related risk measures for heterocedastic financial times series:an extreme value approach[J].Journal of Empirical Finance,2000,7:271-300.
  • 10LONGIN F.From value at risk to stress testing:the extreme value approach[J].Journal of Banking & Finance,2000,24:1097-1130.

共引文献24

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部