摘要
阴性选择(NS)算法是人工免疫的核心方法,检测器生成是具关键.针对具经典V-detector算法中高维数据失效及随机生成初始检测器集过于集中而导致过早收敛等问题,首先采用拟随机序列生成初始检测器;然后通过克降选择优化检测器集合,以覆盖非自体空问大小及数量作为亲和力标准,克服传统进化阴性选择(ENS)算法的局限性,并采用新型进化算子使得算法生成最优检测器集合;最后,通过实验验证了该方法的有效性.
Negative selection(NS) algorithm is the core algorithm of artificial immune system, in which the detector generate mechanism is the key. But the performance of V-detector algorithm becomes unfavorable on high-dimension data and the set of initial detectors randomly generated are too concentrated leading to the algorithm convergence prematurely. Quasi random sequence is used to generate the set of initial detectors. Then the detector set is optimized by using clone selection, and the coverage of non-self-space and the number of detectors are used as the standard of affinity which can over come the limitations of ENSA. A new selection, cloning and mutation operator is used to generate the optimal mature detector set. Finally, experiments verify the effectiveness of the proposed algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2013年第8期1130-1137,共8页
Control and Decision
基金
中央高校基本科研业务费项目(2010121070)
福建省自然科学基金项目(2010J01342)
关键词
进化阴性选择算法
拟随机系列
克隆选择
检测器生成
evolutionary negative selection algorithms
quasi random sequence
clone selection
detector generation