期刊文献+

基于拟随机序列与克隆选择的进化V-detector算法 被引量:1

Evolutionary V-detector algorithms based on clone selection and quasi random sequence
原文传递
导出
摘要 阴性选择(NS)算法是人工免疫的核心方法,检测器生成是具关键.针对具经典V-detector算法中高维数据失效及随机生成初始检测器集过于集中而导致过早收敛等问题,首先采用拟随机序列生成初始检测器;然后通过克降选择优化检测器集合,以覆盖非自体空问大小及数量作为亲和力标准,克服传统进化阴性选择(ENS)算法的局限性,并采用新型进化算子使得算法生成最优检测器集合;最后,通过实验验证了该方法的有效性. Negative selection(NS) algorithm is the core algorithm of artificial immune system, in which the detector generate mechanism is the key. But the performance of V-detector algorithm becomes unfavorable on high-dimension data and the set of initial detectors randomly generated are too concentrated leading to the algorithm convergence prematurely. Quasi random sequence is used to generate the set of initial detectors. Then the detector set is optimized by using clone selection, and the coverage of non-self-space and the number of detectors are used as the standard of affinity which can over come the limitations of ENSA. A new selection, cloning and mutation operator is used to generate the optimal mature detector set. Finally, experiments verify the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2013年第8期1130-1137,共8页 Control and Decision
基金 中央高校基本科研业务费项目(2010121070) 福建省自然科学基金项目(2010J01342)
关键词 进化阴性选择算法 拟随机系列 克隆选择 检测器生成 evolutionary negative selection algorithms quasi random sequence clone selection detector generation
  • 相关文献

参考文献25

  • 1Zhou Ji, Dasgupta D. Revisiting negative selection algorithms[J]. Evolutionary Computation, 2007, 15(2): 223-251.
  • 2Forrest S, Perelson A S, Allen L, et al. Self-nonself discrimination in a computer[C]. Proc of the 1994 IEEE Symposium on Research in Security and Privacy. Los Alamitos: IEEE, 1994: 221-231.
  • 3Gonzalez F, Dasgupta D. Anomaly detection using real- valued negative selection[J]. Genetic Programming and Evolvable Machines, 2003, 4(4): 383-403.
  • 4Zhou Ji, Dasgupta D. Real-valued negative selection algorithm with variable-sized detectors[C]. Proc of GECCO. Washington: Springer, 2004: 287-298.
  • 5金章赞,肖刚,陈久军,高飞.基于视觉感知与V-detector的水质异常检测方法[J].信息与控制,2011,40(1):130-136. 被引量:4
  • 6Stibor T, Timmis J, Eckert C. A comparative study of real- valued negative selection to statistical anomaly detection techniques[C]. Proc of the 4th Int Conf on Artificial Immune Systems. Berlin: Springer, 2005: 262-275.
  • 7Zhou Ji, Dasgupta D. Augmented negative selection algorithm with variable-size detectors[C]. IEEE Congress of Evolutionary Computation. Washington: IEEE Press, 2004, 1: 1081-1088.
  • 8Dasgupta D, Gonzalez E An immunity-based technique to characterize intrusions in computer networks[J]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 1081- 1088.
  • 9Joseph M Shapiro, Gary B. An evolutionary algorithm to generate hyper-ellipsoid detectors for negative selection[C]. GECCO2005. Washington: ACM, 2005: 337-344.
  • 10Dasgupta D, Krishna K, Kumar D Wong, et al. Negative selection algorithm for aircraft fault detection[C]. Proc of the 3rd Int Conf on Artificial Immune Systems. Catania: Springer, 2004: 1-13.

二级参考文献45

共引文献43

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部