摘要
针对在解决某些复杂多目标优化问题过程中,所得到的Pareto最优解易受设计参数或环境参数扰动的影响.引入了鲁棒的概念并提出一种改进的鲁棒多目标优化方法,它利用了经典的基于适应度函数期望和方差方法各白的优势,有效地将两种方法结合在一起.为了实现该方法,给出一种基于粒子群优化算法的多目标优化算法.仿真实例结果表明,所给出的方法能够得到更为鲁棒的Pareto最优解.
In the process of solving some complex multi-objective optimization problems, Pareto optimal solutions obtained are vulnerable to the effects of design parameters or environment parameters perturbation. Therefore, the robust solution is considered and an improved robust multi-objective optimization method is proposed. The method takes advantage of the expectation and variance of fitness fuction value, which are combined effectively. Then, a specific multi-objective evolutionary algorithm(MOEA) based on particle swarm optimization(PSO) is proposed. The simulation results show that, more robust Pareto optimal solutions can be obtained by using the improved method.
出处
《控制与决策》
EI
CSCD
北大核心
2013年第8期1178-1182,1189,共6页
Control and Decision
基金
国家自然科学基金项目(51076143)
关键词
参数扰动
多目标优化
鲁棒优化
parameter perturbation
multi-objective optimization
robust optimization