期刊文献+

一种改进的鲁棒多目标优化方法 被引量:5

An improved robust multi-objective optimization method
原文传递
导出
摘要 针对在解决某些复杂多目标优化问题过程中,所得到的Pareto最优解易受设计参数或环境参数扰动的影响.引入了鲁棒的概念并提出一种改进的鲁棒多目标优化方法,它利用了经典的基于适应度函数期望和方差方法各白的优势,有效地将两种方法结合在一起.为了实现该方法,给出一种基于粒子群优化算法的多目标优化算法.仿真实例结果表明,所给出的方法能够得到更为鲁棒的Pareto最优解. In the process of solving some complex multi-objective optimization problems, Pareto optimal solutions obtained are vulnerable to the effects of design parameters or environment parameters perturbation. Therefore, the robust solution is considered and an improved robust multi-objective optimization method is proposed. The method takes advantage of the expectation and variance of fitness fuction value, which are combined effectively. Then, a specific multi-objective evolutionary algorithm(MOEA) based on particle swarm optimization(PSO) is proposed. The simulation results show that, more robust Pareto optimal solutions can be obtained by using the improved method.
出处 《控制与决策》 EI CSCD 北大核心 2013年第8期1178-1182,1189,共6页 Control and Decision
基金 国家自然科学基金项目(51076143)
关键词 参数扰动 多目标优化 鲁棒优化 parameter perturbation multi-objective optimization robust optimization
  • 相关文献

参考文献14

  • 1Jin Y C, Branke J. Evolutionary optimization in uncertain environments - A survey[J]. IEEE Trans on Evolutionary Computation, 2005, 9(3): 134-137.
  • 2Shimoyama K, Oyama A, Fujii K. A new efficient and useful robust optimization approach- Design for multi-objective six Sigma[C]. 2005 IEEE Congress on Evolutionary Computation. Edinburgh, 2005: 950-957.
  • 3Lim D, Ong Y S, Jin Y C, et al. Inverse multi-objective robust evolutionary design[J]. Genet Program Evoluable Mach, 2006, 7(4): 383-404.
  • 4Jin Y C, Sendhoff B. Trade-off between performance and robustness: An evolutionary multi-objective approach[C]. Proc of the 2nd Int Conf on Evolutionary Multi-criteria Optimization. Springer, 2003: 237-251.
  • 5李亚林,陈静,罗彪,任亚峰,李密青.一种求解鲁棒优化问题的多目标进化方法[J].计算机工程与应用,2011,47(24):58-61. 被引量:5
  • 6Gunawan S, Azarm S. Multi-objective robust optimization using a sensitivity region concept[J]. Structural and Multidisciplinary Optimization, 2004, 29(1): 50-60.
  • 7Barrico C, Antunes C H. An evolutionary approach for assessing the degree of robustness of solutions to muti- objective models[M]. Heidelberg: Springer, 2007: 565- 582.
  • 8Gaspar-Cunha A, Covas J A. Robustness in multi- objective optimization using evolutionary algorithms[J]. Computational Optimization and Applications, 2008,39(1): 75-96.
  • 9Deb K, Gupta H. Introducing robustness in multi-objective optimization[J]. Evolutionary Computation, 2006, 14(4): 463-494.
  • 10Deb K, Gupta H. Searching for robust Pareto-optimal solutions in multi-objective optimization[C]. Proc of the 3rd Int Conf on Evolutionary Multi-criterion Optimization. Guanajuato, 2005: 150-164.

二级参考文献11

  • 1徐佳,李绍军,王惠,钱锋.基于最大最小适应度函数的多目标粒子群算法[J].计算机与数字工程,2006,34(8):31-34. 被引量:7
  • 2郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 3Zitzler E,Thiele L.Multiobjective evolutionary algorithms: a com- parative case study and the strength pareto approach[J].IEEE Trans- actions on Evolutionary Computation, 1999,3 (4) : 257-271.
  • 4Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjec- tive genetic algorithm:NSGA-II[J].IEEE Transactions on Evolu- tionary Computation,2002,6(2) : 182-197.
  • 5Jin Y,Branke J.Evolutionary optimization in uncertain envn-on- ments-a survey[J].IEEE Transactions on Evolutionary Computa- tion, 2005,9 ( 3 ) : 303-317.
  • 6Branke J,Creating robust solutions by means of evolutionary algorithms[C]//Eiben A E.LNCS 1498: Parallel Problem Solving from Nature,PPSN, 1998: 119-128.
  • 7Tsutsui S, Ghosh A.Genetic algorithm with a robust solution searching scheme[J].IEEE Transactions on Evolutionary Computation, 1997,1 (3) :201-219.
  • 8Jin Y, Sendhoff B.Trade-off between performance and robustness: an evolutionary multiobjeetive approach[C]//EMO,2003:237-251.
  • 9Deb K, Gupta H.Searching for robust Pareto-optimal solutions in multi-objective optimization[C]//LNCS 3410:Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, EMO-2005, Guanajuato, Mexico, 2005:150-164.
  • 10Luo Biao,Zheng Jinhua,Xie Jiongliang, et al.Dynamic crowding distance-a new diversity maintenance strategy for MOEAs[C]// The 4th International Conference on Natural Computation,ICNC'08, Jinan,China, 18-20 Oct 2008:580-585.

共引文献18

同被引文献64

  • 1Leon V J, Wu S D, Storer R H. Robustness measures and robust scheduling for job shops [ J ]. IIE Transactions, 1994,26 ( 5 ) : 32 - 43.X.
  • 2Sevaux M, Sorensen K. A genetic algorithm for robust schedules in a one-machine environment with ready times and due dates[ J]. Quar-terly Journal of the Belgian, French and Italian Operations Research Societies,2004,2 (2) : 129 - 147.
  • 3O Donovan R, Uzsoy R, Mckay K N. Predictable scheduling of a sin- gle machine with breakdowns and sensitive jobs [ J ]. International Journal of Production Research, 1999,37 ( 18 ) :4217 - 4233.X.
  • 4Goren S, Sabuncuoglu I. Robustness and stability measures for scheduling: single-machine environment [ J ]. IIE Transactions, 200g ,40( 1 ) :66 -83.
  • 5Briskorn D, Leung J, Pinedo M. Robust scheduling on a single ma- chine using time buffers [ J ]. IIE Transactions, 2011,43 ( 6 ) : 383 - 398.
  • 6Cruz J B,Simaan M A, Gacic A, et al. Game-theoretic modelingand control of a military air operation[J]. IEEE Trans, on Aero-space and Electronic Systems ,2001 , 37(4) : 1393 - 1405.
  • 7Liu Y, Simaan M A, Jr J B C. An application of dynamic nashtask assignment strategies to multi-team military air operations[J]. Automatica, 2003, 39(8) : 1469 - 1478.
  • 8Darrah M. UAV cooperative task assignments for a SEAD missionusing genetic algorithms[C] // Proc. of the AIAA Guidance, Navi-gantion,and Control Conference and Exhibit ,2006 : 1-9.
  • 9Galati D G,Simaan M A. Effectiveness of the nash strategies incompetitive multi-team target assignment probLems[Jl. Transactionsof Aerospace and Electronic Systems ,2007, 43(1) : 126 - 134.
  • 10Xin B,Chen J Juan Z,et al. Efficient decision makings for dynam-ic weapon-target assignment by virtual permutation and tabu searchheuristics[Jj. IEEE Trans . on Systems,Man and Cybernetics,PartC: Applications and Reviews, 2010, 40(6) : 649 - 662.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部