期刊文献+

基于主成分分析和独立成分分析的调制分类算法 被引量:2

Modulation Classification Algorithm Based on PCA and ICA
下载PDF
导出
摘要 基于主成分分析(PCA)和独立成分分析(ICA),提出了一种新的调制分类算法。算法采用PCA对样本数据降维、去除冗余成分,采用FastICA方法提取分类特征;采用支持矢量机(SVM)作为分类器,以解决数据在低维空间中的不可分问题。该算法具有较低的复杂度和较高的训练速度。仿真表明,与最大似然(ML)算法相比,算法仅具有1.8 dB的信噪比损失,在Rayleigh慢衰落信道和中速运动的条件下,算法对5种QAM调制类型具有较好的分类性能。 A principal component analysis (PCA) and independent component analysis (ICA) based modulation classification algorithm is presented. The samples are first processed by PCA to reduce their dimension and eliminate their redundancies, and then the classification features are obtained by the FastlCA algorithm. The Support Vector Machine(SVM) is applied to solve the non-separable problem in low dimension space. The algorithm is less complex computationally and has faster classifier training speed compared with other algorithms. The exten- sive simulation results show that the proposed algorithm has only 1.8 dB SNR loss, and exhibits better classification performance under Rayleigh channel and medium movement condition.
作者 冯祥 陈良彬
出处 《电讯技术》 北大核心 2013年第7期864-867,共4页 Telecommunication Engineering
关键词 通信信号 调制分类 主成分分析 独立成分分析 支持矢量机 communication signal modulation classification principal component analysis independent component analysis support vector machine
  • 相关文献

参考文献3

二级参考文献38

  • 1张宏苏.通信信号的调制识别技术综述[J].科技资讯,2007,5(20):3-4. 被引量:5
  • 2袁晔,梅文博.基于时频域特征和分层决策的通信信号调制识别[J].系统工程与电子技术,2005,27(6):991-994. 被引量:3
  • 3李俊俊,陆明泉,冯振明.基于支持向量机的分级调制识别方法[J].清华大学学报(自然科学版),2006,46(4):500-503. 被引量:10
  • 4Gong G W. Study of FCM algorithm on parmeters and its applications. Master's Thesis. Xi'an, China: Xidian University, 2004 (in Chinese).
  • 5Helmy M O, Zaki F W. Identification of linear bi-dimensional digital modulation schemes via clustering algorithms. Proceedings of the 2009 International Conference on Computer Engineering and Systems (ICCES'09), Dec 14-16, 2009, Cairo, Egypt. Piscataway, NJ, USA: IEEE, 2009:385-390.
  • 6Demuth H, Beale M. Neural network toolbox for MATLAB. Natick, MA, USA: The MathWorks lnc, 1997.
  • 7Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends. IET Communications, 2007, 1(2): 137-156.
  • 8Xu J, Su W, Zhou M. Likelihood function-based modulation classification in bandwidth-constrained sensor networks. Proceedings of the 2010 IEEE International Conference on Networking, Sensing and Control (ICNSC'10), Apr 10-13, 2010, Chicago, IL, USA. Piscataway, N J, USA: IEEE, 2010:530-533.
  • 9Chen M, Zhu Q. Cooperative automatic modulation recognition in cognitive radio. The Journal of China Universities of Posts and Telecommunications, 2010, 17(2): 4-52.
  • 10Wong M L D, Nandi A K. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing, 2004, 84(2): 351-365.

共引文献28

同被引文献28

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部