期刊文献+

超低分辨率人脸图像高速重建方法 被引量:2

High-speed reconstruction for ultra-low resolution faces
原文传递
导出
摘要 文中采用软硬件相结合的方法,实现了一种基于学习的超低分辨率人脸图像的高速重建系统.硬件系统的工作频率为60MHz,采用了FPGA组成并行处理单元,采用多内存形成并行数据,高速实现了计算复杂度高的相似度计算、相似度排序,从而解决了基于学习的超低分辨率人脸图像重建的处理速度问题.文中实现了8×6,16×12,32×24三个级别的人脸图像尺寸的重建系统,重建倍率分别为4×4倍、8×8倍、16×16倍,取得了好的视觉效果和低的RMS误差率,在速度上与C相比,最大可达到7900多倍的加速比,在保证重建质量的同时在处理速度上也有显著的提高. In this paper, a learning-based high-speed reconstruction system for ultra-low resolution faces is im- plemented using a software/hardware co-design paradigm. The hardware component working at 60 MHz contains a field programmable gate array, which is reconfigured to contain parallel processing units, and multiple memo- ries to create parallel data. The hardware component effectively handles generating and sorting computationally intensive similarity metrics. This solves the processing speed problem in learning-based super-resolution recon- struction for ultra-low resolution faces. The system can reconstruct faces using 8 × 6, 16 × 12, and 32 × 24 sized images, with 4 ×4, 8 × 8, or 16 × 16 times magnification. The experimental results verify the effectiveness of our system in terms of both visual effect and low root mean square errors. The processing speed can be improved up to a maxinmm of 7900 times faster than a pure software implementation using C.
出处 《中国科学:信息科学》 CSCD 2013年第7期887-894,共8页 Scientia Sinica(Informationis)
基金 国家重点基础研究发展计划(批准号:2007CB310600) 公安部重点攻关项目(批准号:2005ZDGGQHDX005)资助项目
关键词 邻域图像并行计算机 模板匹配 像素补偿 流水线 分辨率提升 neighborhood image parallel computer template matching pixel compensation pipeline resolution enhancement
  • 相关文献

参考文献2

二级参考文献11

  • 1Burton A M,Miller P,Bruce V, et al.Human and automatic face recognition:A comparison across image formats[].Vision Research.2001
  • 2Russell R,Biederman I,Nederhouser M, et al.The utility of surface re?ectance for the recognition of upright and inverted faces[].Vision Research.2007
  • 3Steyvers M,Busey T.Predicting similarity ratings to faces us-ing physical descriptions[].Computational Geometric and Process Perspectives on Fa-cial Cognition:Contexts and Challenges.2000
  • 4Liu C H,Bhuiyan A -A,Ward J.Transfer between pose and illumination training in face recognition[].Percept.2007
  • 5Yin L,Wei X,Sun Y, et al.A 3D facial expression database for facial behavior research[].IEEE th International Confer-ence on Automatic Face and Gesture Recognition.2006
  • 6Zhu J,Vai M I,Mak P U.A new enhanced nearest feature space (ENFS) classi?er for Gabor wavelets features-based face recognition[].ICBA.2004
  • 7Stewart N,Brown G D A.Similarity and dissimilarity as ev-idence in perceptual categorization[].J Math Psychol.2005
  • 8Lades M,Vorbruggen J C,Buhmann J.Distortion invariant object recognition in the dynamic link architecture[].IEEE Transactions on Computers.1993
  • 9Biederman,I,Kalocsai,P.Neurocomputational bases of object and face recognition[].Philosophical Transactions of the Royal Society of London.1997
  • 10Farah,M,Wilson,K,Drain,M,Tanaka,J.What is “special” about face perception?[].Psychology Review.1998

共引文献10

同被引文献28

  • 1井渌.基于文化的创意——从视觉传达设计教育观念发展来看[J].艺术百家,2007,23(4):99-101. 被引量:3
  • 2Li Y, Lin X. Face hallucination with pose variation[C].Automatic Face and Gesture Recognition Proceedings. Sixth IEEE International Conference on. IEEE, 2004.
  • 3Zhang H, Zhang B, Huang W, et al. Gabor wavelet associative memory for face recognition[J]. Neural Networks, IEEE Transactions on, 2005, 16(1): 275-278.
  • 4Ma X, Huang H, Wang S, et al. A simple approach to multiview face hallucination[J]. Signal Processing Letters, 2010, 17(6): 579-582.
  • 5Ma X, Zhang J, Qi C. Hallucinating face by position-patch[J]. Pattern Recognition, 2010, 43(6): 2224-2236.
  • 6Huang H, He H. Super-resolution method for face recognition using nonlinear mappings on coherent features[J]. Neural Networks, IEEE Transactions on, 2011, 22(1): 121-130.
  • 7. Zeng X, Huang H. Super-resolution method for multiview face recognition from a single image per person using nonlinear mappings on coherent features[J]. Signal Processing Letters, IEEE, 2012, 19(4): 195-198.
  • 8Lin M, Fan X. Low resolution face recognition with pose variations using deep belief networks[C].Image and Signal Processing (CISP), 2011 4th International Congress on, IEEE, 2011.
  • 9Li B, Chang H, Shan S, et al. Low-resolution face recognition via coupled locality preserving mappings[J]. Signal Processing Letters, 2010, 17(1): 20-23.
  • 10Baker S, Kanade T. Limits on super-resolution and how to break them[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(9): 1167-1183.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部