期刊文献+

基于预测模型的浮选过程pH值控制 被引量:8

pH control in flotation process based on prediction model
下载PDF
导出
摘要 矿浆pH值是泡沫浮选过程中的一个非常重要的被控量.目前,多数选厂的矿浆pH值控制基本是依靠现场工人定期对矿浆样本进行pH值测量,凭主观经验对pH调整剂进行调整.由于操作工人的主观性和随意性的影响以及矿浆样本pH值测量与药剂调整间存在的较长的时间滞后,矿浆pH值波动频繁,很难使矿物浮选保持在一个稳定最优生产状态下运行.为了使矿浆pH值保持在一个期望的生产状态,基于浮选泡沫表面视觉信息提出了一种新的矿浆pH值控制方法,分别采用基于泡沫视觉信息的自适应遗传混合神经网络AG–HNN和自适应遗传PID(AG–PID)控制方法建立了矿浆pH值预测模型和pH值控制模型,基于所建立预测和控制模型对浮选药剂用量进行调整,解决了浮选矿浆pH值波动问题.工业浮选现场的实验结果表明该方法可以使矿浆pH值保持在一个期望的范围内,有效提高浮选性能. The pulp pH value is an important controlled variable for process operation in mineral flotation process,which is controlled through regularly adjusting reagent dosage by experienced workers according to the pH measurement results of the current pulp samples.However,due to the influence of the subjectivity and casualness of workers and the long time-lag between the pH measurement of the pulp sample and the reagent adjustment,the pH value of the pulp fluctuates frequently,causing unstable and undesirable production states for mineral flotation.A novel pH control method is proposed to maintain the pulp pH value at an expected production state based on the froth visual information.Firstly,a pH prediction model and a pH control model are built by froth visual information based on the adaptive genetic hybrid neural network(AG–HNN) and adaptive genetic PID(AG–PID) control method,respectively;and then the dosage is adjusted according to the pH value prediction model and the pH control model.Several industrial-scale experiments demonstrate that this method can maintain the pH value of the pulp in an expected range and consequently improve the flotation performance effectively.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第7期885-890,共6页 Control Theory & Applications
基金 国家自然科学基金重点资助项目(61134006) 国家自然科学基金面上项目资助项目(61071176 61171192 61272337)
关键词 PH控制 浮选过程 预测模型 pH control flotation process prediction model
  • 相关文献

参考文献11

  • 1HOLTHAM P N, NGUYEN K K. On-line analysis of froth surface in coal and mineral flotation using JKFrothCam [J]. Mineral Processing,2002, 64(2/3): 163 - 180.
  • 2LIU J J, MACGREGO J F, DUCHESNE C. Flotation froth monitoring using multiresolutional multivariate image analysis [J]. Minerals Engineering, 2005, 18(1): 65- 76.
  • 3何桂春,黄开启.浮选指标与浮选泡沫数字图像关系研究[J].金属矿山,2008,37(8):96-101. 被引量:20
  • 4LIU J J, MACGREGO J F. Froth based modeling and control of flotation process [J]. Minerals Engineering, 2008, 21(9): 642 - 651.
  • 5BARTOLACCI G, PELLETIER P, TESSIER J, et al. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes, Part I: Flotation control based on froth textural characteristics [J]. Mineral Engineering, 2006, 19(6/8): 734 - 747.
  • 6NUNEZ F, CIPRIANO A. Visual information model based predictor for froth speed control in flotation process [J]. Minerals Engineering, 2009, 22(4): 366 - 371.
  • 7周开军,阳春华,牟学民,桂卫华.一种基于图像特征提取的浮选回收率预测算法[J].高技术通讯,2009,19(9):957-963. 被引量:8
  • 8唐朝晖,刘金平,桂卫华,阳春华.基于数字图像处理的浮选泡沫速度特征提取及分析[J].中南大学学报(自然科学版),2009,40(6):1616-1622. 被引量:30
  • 9TESSIER J, DUCHESNE C, GAUTHIER C. Estimation of alumina content of anode cover materials using multivariate image analysis techniques [J]. Chemical Engineering Science, 2008, 63(5): 1370 - 1380.
  • 10WANG F, KO C. Robust PID control of a PEMFC system [C]//2010 IEEE International Conference on Control Applications Part of 2010 IEEE Multi-conference on Systems and Control. Yokohama, Japan: IEEE, 2010:8 - 10.

二级参考文献47

  • 1林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007,32(3):304-308. 被引量:28
  • 2曾荣,沃国经.图像处理技术在镍选矿厂中的应用[J].矿冶,2002,11(1):37-41. 被引量:11
  • 3刘文礼,路迈西.数字图像处理技术在煤泥浮选泡沫图像纹理特征的提取及识别上的应用[J].选煤技术,2004,32(4):78-81. 被引量:10
  • 4甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报(工学版),2007,41(2):245-248. 被引量:27
  • 5Barbian N, Cilliers J J, Morar S H, et al. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of Mineral Processing, 2007, 84(1-4) :81-88.
  • 6Barbian N, Hadler K, Ventura-Medina E, et al. The froth stability column: linking froth stability and flotation performance. Minerals Engineering, 2005, 18(3): 317-324.
  • 7Mu S J, Zeng Y Z, Liu R L. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. Process Control, 2002, 16(6) : 557-566.
  • 8Kaartinen J, Hatonen J, Hyotynierni H, et al. Machine vision based control of zinc flotation-a ease study. Control Engineering Practice, 2006, 14(12): 1455-1466.
  • 9Rughooputh H C S, Rughooputh S D D V. Neural network process vision systems for flotation process. Kybernetes, 2002, 31(3-4): 529-535.
  • 10HyoKtyniemi H, Ylinen R. Modeling of visual rotation froth data. Control Engineering Practice, 2000, 8(3) :313-318.

共引文献46

同被引文献146

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部