期刊文献+

基于分数阶微积分的黏弹性材料变形研究 被引量:8

The deformation study in viscoelastic materials based on fractional order calculus
原文传递
导出
摘要 黏弹性材料的变形行为更加复杂,为了合理地描述黏弹性材料的横向-纵向应变关系,利用分数阶微积分,建立了分数阶横向-纵向应变关系,并推导了等应变率加载时的相应公式,又根据新关系构建了分数阶体积应变公式,为黏弹性材料横向应变及体积应变的求解提供了一种新方法.通过验证,发现该模型能够描述黏弹性材料的横向-纵向应变关系及体积应变,不仅能够表现高分子聚合物等应变率拉伸初期的体积微缩现象,还能反映岩土材料的剪缩剪胀现象. In order to describe the strain of viscoelastic materials better, a new strain model based on fractional order calculus is presented. The fractional longitudinal-transverse strain relationship and the fractional volume strain model are obtained, and the corresponding equations under a constant longitudinal strain rate loading are derived. The new models enjoy the advantage of having fewer parameters and simple form. The fractional strain model is verified by a series of tests under a constant longitudinal strain rate. It’s found that the new model can describe not only the volume strain phenomenon of polymer but also the phenomenon of negative and positive dilatancy in geomaterials.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第8期971-977,共7页 Scientia Sinica Physica,Mechanica & Astronomica
基金 江苏省自然科学基金资助项目(编号:BK2012810)
关键词 分数阶微积分 横向-纵向应变关系 体积应变 黏弹性材料 fractional order calculus longitudinal-transverse strain relationship volume strain viscoelastic materials
  • 相关文献

参考文献23

  • 1Tschoegl N W,Knauss W G,Emri I.Poisson's ratio in linear viscoelasticity-A critical review.Mech Time-Dependent Mater,2002,6(1):3-51.
  • 2Addiego F,Dahoun A,G'Sell C,et al.Characterization of volume strain at large deformation under uniaxial tension in high-density polyethylene.Polymer,2006,47(12):4387-4399.
  • 3Jesus I S,Machado J A T.Implementation of fractional-order electromagnetic potential through a genetic algorithm.Commun Nonlinear Sci Numer Simul,2009,14(5):1838-1843.
  • 4Saha Ray S,Chaudhuri K S,Bera R K.Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method.Appl Math Comput,2006,182(1):544-552.
  • 5Enelund M,Olsson P.Damping described by fading memory-analysis and application to fractional derivative models.Inter J Solids Struct,1999,36(7):939-970.
  • 6Sorrentino S,Fasana A.Finite element analysis of vibrating linear systems with fractional derivative viscoelastic models.J Sound Vib,2007,299(4-5):839-853.
  • 7Shen F,Tan W,Zhao Y,et al.The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model.Nonlinear Analy-Real World Appl,2006,7(5):1072-1080.
  • 8Schmidt A,Gaul L.On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems.Signal Proce,2006,86(10):2592-2601.
  • 9Rossikhin Y A,Shitikova M V.Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives.Signal Proce,2006,86(10):2703-2711.
  • 10Rossikhin Y A,Shitikova M V.A new method for solving dynamic problems of fractional derivative viscoelasticity.Inte J Eng Sci,2001,39(2):149-176.

二级参考文献49

共引文献187

同被引文献90

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部