期刊文献+

半参数模型补偿最小二乘平滑参数求解新方法 被引量:2

New Method to Acquire Smoothing Parameter of Semi-Parametric Model Under Penalized Least Squares
下载PDF
导出
摘要 半参数模型的补偿最小二乘法用于测量平差,是基于残差带权平方和与系统误差补偿项在极小化过程中的平衡关系而提出的,这种平衡是通过附加在补偿项的平滑参数来实现的。通常平滑参数需在非负实数中选择,无明确上界,范围过大,不利于平滑参数的确定。鉴于此,尝试对残差和补偿项赋予相对权比,以简化平滑参数的求解,并实现二者平衡关系的调节。由于相对权比在数值上小于1且其和等于1,故残差和补偿项的相对权比都具有明确的上下界,因此,可将在无明确上界的非负实数中寻求平滑参数的问题转化为在明确范围内确定相对权比的问题。给出了此种情况下的半参数模型的补偿解的表达式及简单统计性质,并用模拟算例验证了本法的可行性。 The semi-parametric model under the penalized least squares method for survey adjustment is based on the principle of balance between the weighted sum-squared residual errors and systematic errors.This balance is achieved by attaching a smoothing parameter to the penalized part.That is systematic errors part.Because large selecting scale of the smoothing parameter,selecting an appropriate smoothing parameter becomes a difficult and key problem.A method of semi-parametric model under the penalized least squares with weight scaling factor is put forward and the formula and statistical properties of estimates are deduced.To ensure the balance of the two parts,the sum of weight scaling factors of two parts must be equal to 1 and restricted between 0 and 1,greatly reduces the smoothing parameter selection range.The simulated examples are demonstrated and some conclusions are drawn.
出处 《桂林理工大学学报》 CAS 北大核心 2013年第2期297-301,共5页 Journal of Guilin University of Technology
基金 国家自然科学基金项目(41071294) 贵州省自然科学基金项目(黔科合J字[2009]2264) 广西空间信息与测绘重点实验室资助课题(桂科能1103108-02) 贵州大学青年自然科学基金项目(贵大自青基合字2009(077))
关键词 半参数模型 补偿最小二乘 平滑参数 相对权比 semi-parametric model penalized least squares smoothing parameters weight scaling factor
  • 相关文献

参考文献9

二级参考文献44

  • 1丁士俊,陶本藻.自然样条半参数模型与系统误差估计[J].武汉大学学报(信息科学版),2004,29(11):964-967. 被引量:39
  • 2Robinson T and Moyeed R.Making robust the cross-vilidatory choice of smoothing parameter in spline smoothing regression[J].Commun.ststist.Theory meth.,1989,18(2),523-539.
  • 3Speckman P.Kernel smoothing in partial linear models[J].J.Roy.Statist.soc.,1988,B50(3):413-436.
  • 4Eubank R L,Hart J D and Speckman P.Trigonometric series regression etimators with an aplication to partially linear model[J].J.Mutivariate Anal.,1990,32:70-83.
  • 5Green P J and Silverman B W.Nonparametric regression and generalized linear models[M].London:Chapman and Hall,1994.
  • 6Fischer B and Hegland M.Collocation filtering and nonparametric regression[J].ZFV,1999,(1):17-23.
  • 7Silverman B W.Some aspect of the spline smoothing approach to non-parametric regression curve fitting[J].J.Roy.Statist.Soc.,1985,47(1):1-52.
  • 8Silverman B W.A fast and efficient cross-validation method for smoothing parameter choice in spline regression[J].J.Amer..Statist.Assoc.,1984,79:584-589.
  • 9Green P J and Siiverman B W. Nonparametric regression and generalised linear models. CHAPMAN and HALL,London, 1994.
  • 10Engle R F Granger c w , Rice J A, et al. Semiparametric estirnates of the relation between weather and electricity sales[J]. Amer. Statist. Assoc. 1986,81,310 - 320.

共引文献138

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部