期刊文献+

F多余子序列与F覆盖

F-superfluous subsequences and F-cover
下载PDF
导出
摘要 给出F多余子序列的概念.利用同调的方法,得到了F多余子序列与F覆盖的关系,并给出了F多余子序列的等价刻画. In this paper, the definition of F-superfluous subsequence is given. By using homological methods, the relation between J-superfluous subsequence and F-cover is obtained. Moreover, a characterization of F-superfluous subsequence is given.
出处 《江苏师范大学学报(自然科学版)》 CAS 2013年第2期6-8,共3页 Journal of Jiangsu Normal University:Natural Science Edition
基金 甘肃省教育厅研究生导师项目(0801-03) 陇南师范高等专科学校校级科研重点项目(2012LSZK02003)
关键词 F多余子模 F多余子序列 F覆盖 F-superfluous submodule ,N-superfluous subsequence F-cover
  • 相关文献

参考文献5

  • 1Bass H. Finitistic dimension and a homological of generalization of semi-primary rings[J]. Trans Am Math Soe, 1960,95:466.
  • 2Enochs E E. Injective and flat covers, envelopes and resolvent[J]. Israel J Math, 1981,39:189.
  • 3Xu Jinzhong. Flat covers of modules[M]. New York: Springer-Verlag, 1996.
  • 4Garcia Rozas J R. Covers and envelopes in the category of complexes of modules[M]. London: Chapman & Hall/CRC Press, 1999.
  • 5宋贤梅.F-本质子模与F-多余子模[J].数学杂志,2012,32(5):918-924. 被引量:2

二级参考文献11

  • 1Bass H. Finitistic dimension and a homological generalization of semi-primary rings [J]. Trans. Amer. Math. Soc., 1960, 95: 466-488.
  • 2Enochs E E. Injective and flat covers, envelopes and resolvent [J]. Israel J. Math., 1981, 39:189-209.
  • 3Xu Jinzhong. Flat covers of modules [M]. Lecture Notes in Math. 1634, Berlin, Heideberg, New York: Springer-Verlag, 1996.
  • 4Trlifaj J. Covers, envelopes and cotorsion theories [M]. Lecture Notes for the Workshop "Homological Methods in Module Theory", Beijing, Nova Science Publishers, 2000.
  • 5Enochs E E, Jenda O M G. Relative homological algebra [M]. Berlin/New York: Walter de Gruyter, 2000.
  • 6Fay T, Jourbert S V. Relative injectiveity [J]. Chinese J. Math., 1994, 22(1): 65-94.
  • 7Anderson F W, Fuller K R. Rings and categories of modules [M]. Second Edition. Graduate Texts, Vol. 13, Berlin, Heidelberg, New York: Springer-Verlag~ 1992.
  • 8Bazzon S, Salce L. Strongly fiat covers [J]. J. London Math. Soc., 2002, 66(2): 276-294.
  • 9Ding Nanqing, Chen Jianlong. Relative covers and envelopes [J]. Acta. Math. Sinica, 1998, 41(3): 609-616.
  • 10Mao Lixin, Ding Nanqing. Notes on cotorsion modules [J]. Comm. Algrbra, 2005, 33(1): 349-360.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部