期刊文献+

对偶分布匹配的图像分割算法 被引量:1

Image Segmentation Algorithm Using Dual Distribution Matching
下载PDF
导出
摘要 针对传统局部一致性方法的缺点,在研究全局一致性方法的基础上,提出一种对偶分布匹配(Dual Distribution Matching,即DDM)的图像分割算法。该算法首先将前景和背景的概率分布作为输入分布,构造出前景和背景的对偶匹配模型,该模型描述两个输入分布和分割结果的相似度,然后利用整幅图像的分布来确定模型的权重参数,从而求解能量函数ε(L)的全局最小化的真解L*,最后利用基于Bhattacharyya的图分割(Bhattacharyya Measure Graph Cut,BMGC)的辅助函数完成能量函数ε(L)的优化,不断更新辅助标记La,Lb收敛于真实标记L*。实验表明在输入分布不够精确的情况下,该算法具有较好的准确性和稳定性。 Aiming at the weak points of local consistency measures, an image segmentation using dual distribution matching is proposed based on global consistency measures. The proposed algorithm uses the probability distribution of foreground and background as input distri- butions, and constructs dual matching model of foreground and background which describes the consistencies between the two input distribu- tions and the resulting segmentation. Then the weighting parameters can be determined by utilizing the entire image distribution matching so that the global minimum of e(L) captures the true solution L~ . Finally, auxiliary functions of bhattacharyya measure graph cut is utilized to optimize e(L) so that auxiliary labels L", Lb are alternately updated to converge to the true label L . Experiments show that the segmenta- tions are robust and accurate when input distributions are not so accurate.
作者 马英辉 高磊
出处 《计算机与数字工程》 2013年第7期1161-1164,共4页 Computer & Digital Engineering
基金 江苏省重大科技支撑与自主创新专项引导资金项目(编号:BE2012731)资助
关键词 图像分割 对偶分布分配 能量函数 局部一致性 全局一致性 image segmentation dual distribution matching energy function local consistency global consistency
  • 相关文献

参考文献11

  • 1徐胜军,韩九强,赵亮,刘欣.用于图像分割的局部区域能量最小化算法[J].西安交通大学学报,2011,45(8):7-12. 被引量:27
  • 2朱雷,杨璟,黄席樾.局部C-V主动轮廓模型快速图像分割算法[J].重庆大学学报(自然科学版),2012,35(6):112-116. 被引量:4
  • 3Jiangyu Liu, Jian Sun, Heung-Yeung Shum. Paint Seleclion[J]. ACM Trans. Graph, 2009,28:1- 7.
  • 4Carsten Rother, Vladimir Kolmogorov, Andrew Blake. Crab cut: Interactive foreground extraction using iterated graph cuts [J]. ACM Trans. Graph. ,2004,23:309-314.
  • 5Bae E, Tai X C. Graph Cut Optimization for the Piecewise Constant Level Set Method Applied to Muhiphase Image Seg mentation[J]. Scale Space and Variational Method in Compute: Vision, 2009,5567: 1-13.
  • 6张文娟,冯象初.基于区域的图切割算法求解Mumford-Shah图像分割模型[J].计算机科学,2012,39(2):297-301. 被引量:2
  • 7Brian L. Price, Bryan Morse, Scott Cohen. Geodesic graph cut for interactive image segmentation[J]. In Proc. CVPR, 2010: 3288-3295.
  • 8Ismail Ben Ayed, Hua mei Chen, Kumaradevan PunitbaKu mar, et al. Graph cut segmentation with a global constraint: Recovering region distribution via a bound of the bhattacharyya measure[J]. In Proc. CVPR, 2010: 3288-3295.
  • 9Viet-Quoc Pham, Keita Takahashi, Takeshi Naemura. Fore ground background segmentation using iterated distribution matching[J]. In Proc. CVPR, 2011: 2113 -2120.
  • 10徐海祥,曹万华,陈炜,郭丽艳.基于改进的支持向量机方法的多目标图像分割[J].舰船电子工程,2009,29(2):113-115. 被引量:3

二级参考文献60

  • 1刘皓挺,姜国华,王丽.变形模板技术及其在多目标跟踪中的应用[J].系统仿真学报,2006,18(4):1073-1077. 被引量:7
  • 2X.Xue et al.A new method of SAR image segmentation based on neural network[C].Fifth International Conference on Computational Intelligence and Multime dia Applications,2003:149~153
  • 3G.Kuntimad,H.S.Ranganath.Perfect image segmentation using pulse coupled neural networks[J].IEEE Transactions on Neural Networks,1999,10 (3):591~598
  • 4V.Vapnik.The nature of statistics learning theory[M].Springer Verlag,New York,1995
  • 5V.Vapnik.Statistical learning theory[M].J.Wiley,New York,1998
  • 6G.Guo,S.Z.Li,K.L.Chan.Support vector machines for face recognition[J].Image and Vision Computing,2001,19:631~638
  • 7S.Li,J.T.Kwok,H.Zhu and Y.Wang.Texture classification using the support vector machines[J].Pattern Recognition,2003,36.2883~2893
  • 8Q,Zhao,J.C.Principe.Support vector machines for SAR automatic target recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37 (2):643~654
  • 9R.A.Reyna,M.Cattoen.Segmenting images with support vector machines.IEEE Int.Conf.Image Proc.,2000:820~823
  • 10C.W.Hsu,C.J.Lin.A comparison of methods for multi-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415~425

共引文献33

同被引文献6

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部