摘要
如今文本自动分类技术发展已较为成熟,中文网页的分类也是自动分类技术的应用之一.分类精度依赖于分类算法,贝叶斯算法在网页分类中有很广泛的使用,但它需要大量且已标记的训练集,而获得大量带有类别标注的样本代价很高.本文以中文网页信息增量式的学习作为研究对象,利用网页已验信息处理训练集增量问题,提出一种改进的增量式的贝叶斯分类算法,研究利用未标记的中文网页来提高分类器的性能,并进行相关实验对比和评价.
出处
《赤峰学院学报(自然科学版)》
2013年第13期23-24,共2页
Journal of Chifeng University(Natural Science Edition)