期刊文献+

WC-Co硬质合金热机械腐蚀疲劳性能的研究 被引量:5

Study on Thermo-mechanical-corrosion Fatigue Behaviourof Cemented Carbides
原文传递
导出
摘要 采用自行设计的实验装置对两种WC-Co硬质合金在压压循环载荷和循环加热冷却同时作用下的热机械腐蚀疲劳行为进行了研究,研究了冷却介质pH值和Co含量对硬质合金热机械腐蚀疲劳性能的影响,同时采用SEM对断口形貌进行了分析。实验结果表明:疲劳断裂的宏观形貌主要是切断型的断裂,疲劳裂纹稳定扩展区上存在很多摩擦碎屑,在稳定扩展区并没有发现疲劳条纹的存在,瞬断区的断裂形貌与静态断裂特征一致。在本文所提供的热机械腐蚀疲劳实验条件下,并未发现冷却介质pH值对两种WC-Co系列的硬质合金的热机械腐蚀疲劳性能的影响,低Co含量的硬质合金YGH30具有比高Co含量硬质合金YGH60更优异的热机械腐蚀疲劳性能。 A set of experimental apparatus was invented to investigate the thermo-mechanical- corrosion fatigue behaviour of two WC-Co cemented carbides under the simtdtaneous effect of compression-compression cyclic load and cyclic beating and cooling, The influence of Co content and pH value on the thermo-mechanical-corrosion fatigue behaviour was studied. Fractographic analysis was carried out by SEM. The results show that the macroscopic fracture morphology exhibits a shear type. A lot of friction debris is seen in the stable crack growth region while no fatigue stripes are found. The unstable crack growth region exhibits a static fracture appearance. In the present work,no significant influence of pH of the cooling medium on the thermo-mechanical- corrosion fatigue hehaviour is found for both cemented carbides. And the lower Co content cemented carbide YGH30 shows a better thermo-mechanlcal-corrosion fatigue behavior than the higher Co content cemented carbide YGH60.
出处 《硬质合金》 CAS 2013年第3期161-166,共6页 Cemented Carbides
关键词 硬质合金 热机械腐蚀疲劳 断裂形貌 cemented carbides thermo-mechanical-corrosion fatigue fracture morphology
  • 相关文献

参考文献19

  • 1徐涛.硬质合金高端产品及新材料发展趋势分析[J].硬质合金,2011,28(6):395-402. 被引量:41
  • 2李壮,王家君,林晨光,崔舜.WC-Co超细硬质合金微观结构对其性能的影响[J].硬质合金,2009,26(3):188-193. 被引量:24
  • 3陈振华,姜勇,陈鼎,张忠健,徐涛,彭文.硬质合金的疲劳与断裂[J].中国有色金属学报,2011,21(10):2394-2401. 被引量:28
  • 4Vasel C H, Krawitz A D, Drake E F, et al. Binder deformation in WC-(Co,Ni) cemented carbide composite[J]. Metallurgical Transactions A, 1985, 16: 2309-2317.
  • 5Kuresawe S, Pott P h, Sockel H G, et al. On the influence of binder content and binder composition on the mechanical properties of hardmet- als[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19: 335-340.
  • 6Sailer T, Herr M, Sockel H G, et al. Microstructure and mechanical properties of ultrafine-grained hardmetals[J]i International Journal of Refractory Metals and Hard Materials, 2001, 19: 553-559.
  • 7Lanes L, Torres Y, Anglada M. On the fatigue crack growth behavior of WC-Co cemented carbides: kinetics description, microstrnctural ef- fects and fatigue sensitivity[J]. Acta Materialia, 2002, 50: 2381-2393.
  • 8Dary F C, Roebuck B, Gee M G. Effects of microstructure on the thermomechanical fatigue response of hardmetals using a new miniaturised testing rig[J]. International Journal of Refractory Metals and Hard Materials, 1999, 17: 45-53.
  • 9Roebuck B, Maderud C J, Morrel R. Elevated temperature fatigue testing of hardmetals using notched testpieces[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26: 19-27.
  • 10Kindermann P, Schlund P, Sockel H G, et al. High-temperature fa- tigue of cemented carbides under cyclic loads[J]. International Journal of Refractory Metals and Hard Materials, 1999, 17: 55-68.

二级参考文献120

共引文献88

同被引文献53

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部