期刊文献+

图像型垃圾邮件过滤技术研究进展 被引量:3

A Survey on Key Technologies of Image Spam Filtering
下载PDF
导出
摘要 近年来,图像型垃圾邮件数量的迅速增长使得传统垃圾邮件过滤系统面临重大挑战,并逐渐成为信息安全领域的研究热点。为了能够快速、有效地滤除图像型垃圾邮件,学者们提出了大量的过滤检测方法。首先简要介绍了图像型垃圾邮件给我国带来的影响;然后结合垃圾邮件图像的特征,对图像型垃圾邮件过滤的主要技术:基于近似特征的过滤、基于图像文本特征的过滤、基于图像浅层特征的过滤等进行了分析;接下来对图像型垃圾邮件数据获取方法进行了介绍;最后对过滤技术的研究方向以及面临的挑战进行了讨论和展望。 Recently,the rapid growth of image spam makes traditional spam filters facing more and more challenges,and it also becomes a hot research field of information security.In order to be able to filter image spam effectively and efficiently,scholars have proposed a lot of detection methods.Firstly,this paper introduces the effect of image spam brought to our country.Then,according to the characteristics of spam images,the paper analyzes the main filtering techniques: filtering methods based on near-duplicate detection,filtering methods based on image text features,and filtering methods based on image low-level features,etc.Next,the method of image spam dataset acquisition is introduced.And finally,the research direction and challenges of filtering method are discussed.
作者 李鹏 崔刚
出处 《智能计算机与应用》 2013年第3期28-32,36,共6页 Intelligent Computer and Applications
基金 国家自然科学基金(61171193)
关键词 图像型垃圾邮件 垃圾邮件图像 特征抽取 邮件过滤 近似复制检测 Image Spam Spam Image Feature Extraction Spam Filtering Near Duplicate Detection
  • 相关文献

参考文献6

二级参考文献79

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2Furmcra G,Pillai I,Roli F.Spare Filtering Based on the Analysis of Text Information Embedded into Images[J].Journal of Machine Learning Research,2006,(7):2699-2720.
  • 3Wu C T,Cheng K T,Zhu Q,et al.Using Visual Features for Anti-spam Filtering[C]//proc.of ICIP'05.Genoa,Italy:IEEE Press,2005.
  • 4Nhung N P,Phuong T M.An Efficient Method for Filtering Image-based Spam[C]//Proc.of IEEE International Conference on Research,Innovation and Vision for the Future.Hanoi,Viemam:IEEE Press,2007.
  • 5Hu Jianying,Bagga A.Categorizing Images in Web Documents[J].IEEE Multimedia,2004,11(1):22-30.
  • 6Wan Mingcheng,Zhang Fengli,Cheng Hhongrong,et al.Text Localization in Spare Image Using Edge Features[C]//Proc.of International Conference on Communications,Circuits and Systems.Xiamen,China:[s.n.],2008.
  • 7Aradhye H B,Myers G K.Herson J A.Image Analysis for Efficient Categorization of Image-based Spare E-mail[C]//Proc.of the 8th International Conference on Document Analysis and Recognition.Washington D.C.,USA:IEEE Computer Society,2005.
  • 8Byun B,Lee C H,Webb B S,et al.A Discriminative Classifier Learning Approach to Image Modeling and Spam Image Identification[C]//Proc.of CEAS'07.California,USA:[s.n.],2007.
  • 9[1]B Krishnamurthy.Mohonk:Mobile honeypots to trace unwanted traffic early.The ACM SIGCOMM Workshop on Network Troubleshooting (NetT'04),Portland,Oregon,USA,2004
  • 10[2]The Honeynet Project.http://www.honeynet.org,2007

共引文献279

同被引文献45

  • 1冯兵,李芝棠,花广路.基于灰度—梯度共生矩阵的图像型垃圾邮件识别方法[J].通信学报,2013,34(S2):1-4. 被引量:11
  • 2林海卓,王继龙,吴建平,杨家海,徐聪.高校误判垃圾邮件自动召回系统的研究与实现[J].通信学报,2013,34(S2):121-132. 被引量:1
  • 3Biggio B,Fumera G,Pillai I,et al.A survey and experimental evaluation of image spam filtering techniques[J].Pattern Recognition Letters,2011,32(10):1436-1446.
  • 4Liu Qiao,Qin Zhiguang,Chen Hongrong,et al.Efficient modeling of spam images[C] //Proc of the 3rd International Symposium on Intelligent Information Technology and Security Informatics.[S.l.] :IEEE Press,2010:663-666.
  • 5Wang Zhe,Josephson W,Lyu Qin,et al.Filtering image spam with near-duplicate detection[C] // Proc of the 4th Conference on Email and Anti-Spam.2007:1-10.
  • 6Mehta B,Nangia S,Gupta M,et al.Detecting image spam using visual features and near duplicate detection[C] // Proc of the 17th International Conference on World Wide Web.2008:497-506.
  • 7Indyk P,Motwani R.Approximate nearest neighbor:towards removing the curse of dimensionality[C] //Proc of the 30th Annual ACM Symposium on Theory of Computing.1998:604-613.
  • 8PauleveL,Jegou H,Amsaleg L.Locality sensitive hashing:a comparison of hash function types and querying mechanisms[J].Pattern Recognition Letters,2010,31(11):1348-1358.
  • 9Gionis A,Indyk P,Motwani R.Similarity search in high dimensions via hashing[C] //Proc of the 25th International Conference on Very Large Data Bases.1999:1-19.
  • 10Dasgupta A,Kumar R,Sarlos T.Fast locality-sensitive hashing[C] //Proc of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2011:1073-1081.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部