期刊文献+

电站锅炉低NO_x燃烧建模优化研究与应用 被引量:10

Optimization Study and Application of the Modeling of the Low NO_x Combustion of a Utility Boiler
原文传递
导出
摘要 为了降低电站锅炉NOx排放,对锅炉燃烧进行优化和控制,分别应用NOx排放特性的实炉试验数据和在线采集的大量实时运行数据进行支持向量机算法和BP神经网络算法的建模研究,对比了不同建模数据情况下两种算法建模的性能,结果表明,支持向量机模型在泛化能力方面优于BP神经网络模型。应用支持向量机算法与遗传算法相结合,针对某330 MW煤粉炉进行了实际的锅炉燃烧优化试验,将该炉的NOx排放由708.5 mg/m3降低为576.1 mg/m3。表明该方法是一种有效的降低NOx排放的锅炉燃烧优化方法。 To reduce the NOx emissions of utility boilers,optimized and controlled was the combustion of a boiler to utilize the test data and a large number of on-line acquired operation data of the NOx emission characteristics of an actual boiler respectively to study how to establish a model based on the supporting vector machine algorithm and BP neural network algorithm. On this basis,the performance of the modeling based on both algorithms under different data for modeling was compared. It has been found that the supporting vector machine model is superior to BP neural network model in terms of the generalization ability. The supporting vector machine algorithm was used in combination with the genetic algorithm to conduct an actual combustion optimization test of a 330 MW pulverized coal-fired boiler,lowering the NOx emissions of the boiler from 708. 5 mg/m 3 to 576. 1 mg/m 3 . This shows that the method in question is an effective combustion optimization method for boilers to reduce NOx emissions.
作者 王春林 张乐
出处 《热能动力工程》 CAS CSCD 北大核心 2013年第4期390-394,438,共5页 Journal of Engineering for Thermal Energy and Power
基金 基于管道输送的煤泥流化床系统混合建模与在线操作优化研究(60904058) 无线传感器网络智能信息处理关键技术研究(Y1111220)
关键词 锅炉 NOx 支持向量机 BP神经网络 boiler NOx supporting vector machine BP neural network
  • 相关文献

参考文献9

  • 1Falcitelli M, Pasini S, Tognotti L. Modelling practiceal combustion systems and predicting NOx emissions with an integrated CFD based approach [ J ]. Computers & Chemical Engineering,2002,26 (9) :1171 -1183.
  • 2Visona S P, Stanmore B R. Modelling NO formation in a swirling pulverized coal flame [ J]. Chemical Engineering Science, 1998,53 (11) :2013 -27.
  • 3Xu M H,Azevedo J L T,Carvalho M G. Modelling of the combus- tion processs and NOx emission in a ytility boiler [ J]. Fuel ,2001, 79(13) :1074 -81.
  • 4王景雷,吴景社,孙景生,齐学斌.支持向量机在地下水位预报中的应用研究[J].水利学报,2003,34(5):122-128. 被引量:117
  • 5萧嵘,王继成,张福炎.支持向量机理论综述[J].计算机科学,2000,27(3):1-3. 被引量:35
  • 6JohnShawe-Taylor.支持向量机导论[M].李国正,王猛,增华军译.北京:电子工业出版社,2004.
  • 7Keerthi K. , Lin C J. Asymptotic behaviors of support vector ma- chines with Gaussian kernel [ J ]. Neural Computation, 2003 15 (3), 1667 - 1689.
  • 8Lin H T, Lin C J. A study on sigmoid kernels for SVM and the training of non-PSD Kernels by SMO-type methods [ R ]. Taiwan: National Taiwan University 2003.
  • 9王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76. 被引量:98

二级参考文献39

  • 1占勇,丁屹峰,程浩忠,曾德君.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47. 被引量:60
  • 2张国云,章兢.基于模糊支持向量机的多级二叉树分类器的水轮机调速系统故障诊断[J].中国电机工程学报,2005,25(8):100-104. 被引量:36
  • 3赵辉 李进生 郭秀林.地下水位动态的人工神经网络研究[A]..农业节水与地下水开发利用[C].,2000..
  • 4[1]Vapnik V, Lerner A. Pattern Recognition using Generalized Portrait. Automation and Remote Control, 1963,24:6
  • 5[2]Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. , 1971,33(1):82~95
  • 6[3]Wahba G. Spline Models for Observational Data(book).SLAM, CBMS-NSF Regional Conference Series, V59.1990
  • 7[4]Boser B, et al. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh. 1992
  • 8[5]Vapnik V. The Nature of Statistical Learning Theory.Springer-Verlag, New York. 1995
  • 9[6]Keerthi S S, el al. A fast iterative nearest point algorithm for support vector machine classifier design: [Technical Report No. TR-ISL-99-03]. Dept of CSA,IISC,Ranga lore, INDIA. 1999
  • 10[7]Tsuda K. Optimal Hyperplane Classifier with Adaptive Norm: [ETL technical report TR-99-9]. 1999

共引文献244

同被引文献67

引证文献10

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部