期刊文献+

工业大系统双层结构预测控制的集中优化与分散控制策略 被引量:20

Strategy of Centralized Optimization and Decentralized Control for Two-layered Predictive Control in Large-scale Industrial Systems
下载PDF
导出
摘要 为降低工业大系统模型预测控制(Model predictive control,MPC)在线计算复杂度,同时保证系统的全局优化性能,提出一种集中优化、分散控制的双层结构预测控制策略.在稳态目标计算层(Steady-state target calculation,SSTC),基于全局过程模型对系统进行集中优化,将优化结果作为设定值传递给动态控制层;在动态控制层,将大系统划分为若干个子系统,每个子系统分别由基于各自子过程模型的模型预测控制进行控制,为减少各子系统之间的相互干扰,在各个子系统之间添加前馈控制器对扰动进行补偿,提高系统的总体动态控制性能.该策略的优点在于能确保系统全局最优性的同时降低了在线计算量,提高了工业大系统双层结构预测控制方法的实时性.仿真实例验证该方法的有效性. Aiming at reducing the on-line computational bur- den of model predictive control (MPC) for large-scale systems and maintaining the global optimization performance, a new two-layered MPC strategy is proposed. In the steady-state tar- get calculation (SSTC) layer, the centralized optimization of the system is based on the global process model. The optimal re- sults are sent to the dynamic control layer as the set points. In dynamic control layer, the large-scale system is divided into sev- eral subsystems which will be controlled with separate MPCs. To compensate the interference between the subsystems, feed- forward controllers are added between the subsystems, so that the overall dynamic control performance of the system will be improved. The advantages of the proposed strategy are that, the global optimal performance of the system is guaranteed, while the on-line computational complexity is reduced, and the real- time property of the two-layered MPC for large industrial sys- tem is enhanced. Simulation examples are given to verify the proposed method.
出处 《自动化学报》 EI CSCD 北大核心 2013年第8期1366-1373,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61074059) 中国科学院知识创新项目(KGCX2-EW-104) 浙江省科技厅公益项目(2011c31040) 浙江省教育厅科研项目(Y201121651) 河北省应用基础研究计划重点基础研究项目(13964509D)资助~~
关键词 预测控制 子系统 前馈控制器 双层结构 大系统 Predictive control, subsystem, feed-forward con-troller, two-layered structure, large-scale system
  • 相关文献

参考文献16

  • 1Wang Y, Boyd S P. Fast model predictive control using on- line optimization. IEEE Transactions on Control Systems Technology, 2010, 18(2): 267-278.
  • 2Diehl M, Amrit R, Rawlings J B. A Lyapunov function for economic optimizing model predictive control. IEEE Trans- actions on Automatic Control, 2011, 56(3): 703-707.
  • 3Ling K V, Maciejowski J, Richards A, Wu B F. Multiplexed model predictive control. Automatica, 2012, 48(2): 396-401.
  • 4Cao Z W, Easterling D R, Watson L T, Li D, Cameron K W, Feng WC. Power saving experiments for large-scale global optimisation. International Journal of Parallel, Emer- gent, and Distributed Systems, 2010, 25(5): 381-400.
  • 5Qin S J, Badgwell T A. A survey of industrial model predic- tive control technology. Control Engineering Practice, 2003, 11(7): 733-764.
  • 6Kassmann D E, Badgwell T A, Hawkins R B. Robust steady- state target calculation for model predictive control. AIChE Journal, 2000, 46(5): 1007-1024.
  • 7NijandrovI A, Swartz C L E. Sensitivity analysis of LP-MPC cascade control systems. Journal of Process Control, 2009, 19(1): 16-24.
  • 8Xi Yu-Geng. Introduction of Dynamic Large-Scale Systems. Beijing: National Defense Press, 1988.
  • 9Adetola V, Guay M. Integration of real-time optimization and model predictive control. Journal of Process Control, 2010, 20(2): 125-133.
  • 10Zhang Y, Li S Y. Networked model predictive control based on neighbourhood optimization for serially connected large- scale processes. Journal of Process Control, 2007, 17(1): 37-50.

同被引文献195

引证文献20

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部