摘要
在深入分析基于图的人名识别框架GHOST的基础上,针对其存在的局限性,结合对文献信息的文本挖掘提出一种更适用于文献数据库的作者名消歧算法,并从中选取标题以及出版物名称这两个特征进行实证研究,该算法在准确率、召回率等指标方面都有良好的表现,F1平均值达到84%,具备较好的消歧效果。
This paper firstly analyzes a graphical fi'amework for name disambiguation called GHOST, and then provides a modified name disambiguation algorithm combining with the text mining of literature information. The new algorithm is more suitable for literature database, making up for the limitations existed in GHOST. Based on selecting title and publication name as computing feature from the literature information, the experiment shows that the algorithm achieves high precision and recall value, and F1 reaches 84% , which is good enough for name disambiguation.
出处
《现代图书情报技术》
CSSCI
北大核心
2013年第7期69-74,共6页
New Technology of Library and Information Service
关键词
作者名消歧
GHOST
文本挖掘
消歧算法
Author name disambiguation
GHOST
Text mining
Disambiguation algorithm