期刊文献+

Ca(AlH_4)_2的机械力化学合成及其催化放氢过程

Mechano-chemical Synthesis and Catalytic Dehydrogenation Process of Ca(AlH_4)_2
原文传递
导出
摘要 研究了Ca(AlH_4)_2机械力化学合成过程的反应机理及添加K_2TiF_6,KBF_4,TiF_3,NbF_5对其放氢过程的影响.结果表明,机械球磨过程中,LiAlH_4与CaCl_2先反应形成中间相LiCa(AlH_4)_3,中间相再与CaCl_2反应生成Ca(AlH_4)_2.添加含F^-化合物可有效改善Ca(AlH_4)_2的放氢性能,其中,K_2TiF_6的催化效果最佳,可使Ca(AlH_4)_2前两步放氢温度分别降低39和66℃.含F^-化合物在球磨或加热过程中与Ca(AlH_4)_2发生化学反应,产物可催化Ca(AlH_4)_2放氢过程. The reaction mechanism in mechano-chemical synthesis of Ca(A1H4)2 and the effects of F-containing compounds (K2TiF6, KBF4, TiF3 and NbFs) on the dehydrogenation process of Ca(AIH4)2 were investigated. It was found that the synthesis process of Ca(A1H4)2 from LiA1H4 and CaC12 could be divided into two steps, LiA1H4 reacted with CaC12 to form an intermediate phase LiCa(AIH4)3, and LiCa(A1H4)3 further reacted with CaC12 to form Ca(A1H4)2. The addition of F-containing compounds could effectively improve its dehydrogenation property, and K2TiF6 exhibited the best catalytic effect, with the dehydrogenation temperatures in the first two steps of Ca(A1H4)2 reduced by 39 and 66 ℃, respectively. The F-containing additives could react with Ca(A1H4)2 during the ball-milling or subsequent heating larocess, and the generated substances improved the dehydrogenation orooertv of Ca(A1H4)9.
出处 《过程工程学报》 CAS CSCD 北大核心 2013年第4期710-714,共5页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:50901001)
关键词 Ca(AlH4)2 机械力化学合成 放氢性能 催化改性 Ca(A1H4)2 mechano-chemical synthesis dehydrogenation property catalytic modification
  • 相关文献

参考文献17

  • 1Bogdanovic B, Schwickardi M. Ti-doped Alkali Metal AluminumHydrides as Potential Novel Reversible Hydrogen Storage Materials[J]. J. Alloys Compd.,1997, 253/254: 1-9.
  • 2Schiith F, Bogdanovic B, Felderhoff M. Light Metal Hydrides andComplex Hydrides for Hydrogen Storage [J]. Chem. Commun., 2004,(20): 2249-2258.
  • 3Orimo S, Nakamori Y,Eliseo J R, et al. Complex Hydrides for Storage[J]. Chem. Rev.,2007,107(10): 4111^132.
  • 4Jain I P, Jain P, Jain A. Novel Hydrogen Storage Materials: A Reviewof Lightweight Complex Hydrides [J]. J. Alloys Compd., 2010,303(3): 303-339.
  • 5Mamatha M, Weidenthaler C, Pommerin A, et al. ComparativeStudies of the Decomposition of Alanates Followed by in situ XRDand DSC Methods [J]. J. Alloys Compd., 2006,416(1/2): 303-314.
  • 6Sato T, Sorby M H, Ikeda K, et al. Syntheses, Crystal Structures, andThermal Analyses of Solvent-free Ca(AlD4)2 and CaAlD5 [J]. J.Alloys Compd., 2009,487(1/2): 472-478.
  • 7Li C X,Xiao X Z, Ge P G,et al. Investigation on Synthesis, Structureand Catalytic Modification of Ca(AlH4)2 Complex Hydride [J]. Int. J.Hydrogen Energy, 2012, 37(1): 936-941.
  • 8Fichtner M, Frommen C, Fuhr O. Synthesis and Properties of CalciumAlanate and Two Solvent Adducts [J], Inorg. Chem., 2005, 44(10):3479-3484.
  • 9Mamatha M, Bogdanovic B, Felderhoff M, et al. MechanochemicalPreparation and Investigation of Properties of Magnesium, Calciumand Lithium-Magnesium Alanates [J]. J. Alloys Compd., 2006,407(1/2): 78-86.
  • 10Kabbour H,Ahn C C, Hwang S J,et al. Direct Synthesis and NMRCharacterization of Calcium Alanate [J]. J. Alloys Compd., 2007,446/447: 264-266.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部