期刊文献+

基于分类器技术的白内障组织图像去噪方法

Cataract organization image denoising methods based on classifier technology
下载PDF
导出
摘要 为实现根据视频图像等信息自动识别白内障组织及硬度,并对其进行智能分类的目的,提出了基于分类器技术的白内障组织图像去噪方法。对白内障图像去噪的关键在于区分白内障与正常组织和区分白内障硬度级别。这两个方面均涉及了图像特征提取和分类器方法。对图像特征提取,采取了颜色特征和纹理特征进行提取,并在这两种传统的特征上提出了一种新的图像特征提取方法。在分类器算法的选择上,采取了最近邻法和支持向量机的方法。以某医院提供的手术视频截图为例,对比了采用不同方法对白内障组织的识别率。 To automatically identify the cataract tissue,including the hardness and intelligent classification,cataract organization image denoising methods based on the classifier technology is presented.The key issues to implement cataract image denoising are distinguishing cataract with normal organization and distinguishing cataract hardness level.Both of the two aspects are related to the image feature extraction and classification methods.The color feature and texture feature are adopted on the image feature extraction,and a new image feature extraction method is put forward based on these two traditional features.The nearest neighbor method and the support vector machine are used as classifier algorithm.Finally,a hospital surgical video capture is taken as example to demonstrate the recognition rate of cataract organization by using different methods.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第8期2834-2838,共5页 Computer Engineering and Design
关键词 图像特征提取 分类器 支持向量机 最近邻法 图像去噪 image feature extraction classifier technology support vector machine(SVM) nearest neighbor method(KNN) image denoising methods
  • 相关文献

参考文献4

二级参考文献33

  • 1雷方元,郝重阳,王海南,郑建铧,樊养余.一种基于颜色块直方图的图像检索方法[J].计算机应用研究,2004,21(5):173-174. 被引量:5
  • 2孙君顶,崔江涛,毋小省,周利华.基于颜色和形状特征的彩色图像检索方法[J].中国图象图形学报(A辑),2004,9(7):820-827. 被引量:30
  • 3郑恩辉,许宏,李平,宋执环.基于ν-SVM的不平衡数据挖掘研究[J].浙江大学学报(工学版),2006,40(10):1682-1687. 被引量:8
  • 4周云燕,杨坤涛.基于RHT-LSM直线检测方法的研究[J].光电工程,2007,34(1):55-58. 被引量:16
  • 5VEROPOULOS K, CAMPBELL C, CRISTIANINI N. Controlling the sensitivity of support vector machines [ C]//IJCAI'99: Proceed- ings of the Sixteenth International Joint Conference on Artificial In- telligence. San Francisco, CA: Morgan Kaufmann Publishers,1999:55-60.
  • 6LIN T-C, YU PAO-TA. Adaptive two-pass median filter based on support vector machines for image restoration [ J]. Neural Computa- tion, 2004, 16(2): 333-354.
  • 7CORTES C, VAPNIK V. Support vector networks [ J]. Machine Learning, 1995, 20(3) : 273 -297.
  • 8CRISTIANININ,SHAWE-TAYLORJ.支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2000.
  • 9CHANG C-C, LIN C-J. LIBSVM: A library for support vector ma- chines [ EB/OL]. [ 2011 - 01 - 11 ]. http://www, csie. ntu. edu. tw/- cjlin/libsvm.
  • 10A cqua FD ,Gamba P. Detection of urban structures in SAR images by robust fuzzy clustering algorithms the example of street tracking. IEEE Trans. on Gcoscicnce and Remote Sensing, 2001.223-230.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部