期刊文献+

一种检测时空数据中重要同现模式的快速算法 被引量:2

A Fast Method for Detection of the Important Co-Occurrence Cases from Spatio-Temporal Dataset
原文传递
导出
摘要 同现模式反映了对象移动过程中的接触情况。快速准确地挖掘移动对象的同现模式是许多领域开展研究的基础。本文提出了一种从移动对象的历史轨迹数据集中快速检测重要同现模式的算法。重要同现模式是指发生在移动对象停留期间的同现模式。该算法首先检测出所有移动对象的经停地,然后以经停地为最小单位,检测经停地之间的同现,最后在经停地的同现中识别出最终的重要同现实例。在青海湖斑头雁迁徙轨迹数据集上进行了大量对比实验,验证了算法的效率及有效性。 Co-occurrence pattern reveals the interactions among objects. Detecting the co-occurrence cases of mobile objects quickly and accurately is the key step to do further researches in many research areas. In this paper, we propose a fast method to detect the important co-occurrence cases from spatio-temporal datasets. Important co-occurrence cases denote the co-occurrence occurs during the stay of mobile objects. The method we proposed is stay-site-based. Concretely, we firstly detect all the stay sites of mobile objects, and then consider stay site as the smallest unit to detect the spatio-temporal overlaps among stay sites.Finally, we figure out all the important co-occurrence cases from stay-site-based co-occurrence. To verify the efficiency and accuracy of out method, we have conducted a sort of experiments on the historical trajectories dataset of bar-headed gooses in Qinghai Lake area.
出处 《科研信息化技术与应用》 2013年第3期23-31,共9页 E-science Technology & Application
基金 国家自然科学基金(90912006) 国家自然科学基金探索性研究小额资助项目(0713027) 中国国家研发基础设施和设备开发项目(BSDN2009-18)
关键词 时空数据集 同现模式 经停地 候鸟迁徙 spatio-temporal dataset co-occurrence stay site bird migration
  • 相关文献

参考文献11

  • 1L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Buildingpersonal maps from gps data,” in Proc. of IJCAIM0005,2005,pp. 249-265.
  • 2Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma,“Mining user similarity based on location hisotry,” inProc. of GIS,2008.
  • 3Yu Zheng, Lizhu Zhang, Zhengxin Ma, Xing Xie, WeiyingMa, Mining Interesting Locations and Travel Sequencesfrom GPS Trajectories, www 2009,April 2009.
  • 4Zheng, Y.,Zhang, L.,Ma, Z.,Xie, X. and Ma, W.Y.,(2011) Recommending friends and locations based onindividual location history. ACM Trans. Web 5(1).
  • 5Chiew K, Qian F, He Q, et al. Spatial co-location patterndiscovery without thresholds[J]. 2012.
  • 6Canh T V,Gertz M. A Constraint Neighborhood BasedApproach for Co-location Pattern Mining[C]//Knowledgeand Systems Engineering (KSE), 2012 Fourth InternationalConference on. IEEE, 2012: 128-135.
  • 7Mete Celik, Shashi Shekhar,James P. Rogers, James A.Shine: Mixed-Drove Spatiotemporal Co-OccurrencePattern Mining. IEEE Trans. Knowl. Data Eng. 20(10):1322-1335,2008.
  • 8Sajib Barua , Jorg Sander, SSCP: mining statisticallysignificant co-location patterns, Proceedings of the 12thinternational conference on Advances in spatial andtemporal databases, August 24-26, 2011,Minneapolis,MN.
  • 9S. Shekhar and Y. Huang. Discovering spatial co-locationpatterns: A summary of results. In Proc of the 7thInternational Symposium on Advances in Spatial andTemporal Databases (SSTD), 2001.
  • 10Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Miningconfident co-location rules without a support threshold. InProc. of the 18th ACM Symposium on Applied Computing(ACM SAC), 2003.

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部