期刊文献+

基于GPU的多重网格Navier-Stokes解算器并行优化方法研究 被引量:3

Implementation and Optimization of a Navier-Stokes Solver with Multigrid Methodology Based on GPU
原文传递
导出
摘要 随着工业计算需求的激增,计算流体力学(Computational Fluid Dynamics,CFD)学科对计算效率问题越来越重视。作者基于自行开发的Navier-Stokes解算器,引入多重网格加速收敛算法,并结合NVIDIA GPU计算平台,从数值方法和高性能计算两个方面为CFD实现加速。数值加速算例测试结果表明,基于多重网格算法的GPU解算器相对CPU版本代码双精度可获得45倍以上的加速。 With rapid growth of the computing demands in industry, the computational efficiency gets more and more attention in the field of computational fluid dynamics(CFD). In this paper, we present the parallelization and acceleration techniques based on NVIDIA GPU for CFD, using our self-developed Euler solver with multigrid methodology(MGM). Numerical experiments results showed that for aerodynamics, the GPU accelerated Euler Solver with MGM achieved more than 45 times speedup over the CPU code in double precision computation.
出处 《科研信息化技术与应用》 2013年第3期56-67,共12页 E-science Technology & Application
基金 国家高技术研究发展计划(863计划)(2012AA01A304) 国家自然科学基金项目(91130019)
关键词 GPU CUDA CFD 多重网格 并行优化 GPU CUDA, CFD multigrid methodology parallel optimization
  • 相关文献

参考文献14

  • 1Wolfgang Schmidt, Antony Jameson, Applications of multi-grid methods for transonic flow calculations,Lecture Notesin Mathematics, 1982,Volume 960/1982.
  • 2Erich Elsen, Patrick LeGresley, Eric Darve, Largecalculation of the flow over a hypersonic vehicle usinga GPU, Journal of Computational Physics, 2008.
  • 3Peter Bailey, Joe Myre, Stuart D.C.Walsh, David J.Lilja,Martin O.Saar, Accelerating Lattice Boltzmann Fluid FlowSimulation Using Graphics Processors.
  • 4Athanasios S.Antoniou, Konstantinos I. Karantasis,Eleftherios D.Polychronopoulos, John A.Ekaterinaris,Acceleration of a Finite-Difference WENO Scheme forLarge-Scale Simulation on Many-Core Architectures,American Institute of Aeronautics and As.
  • 5Zhang De Liang, Higher Education Press, A Course inComputational Fluid Dynamics.
  • 6J.Blazek, Computational Fluid Dynamics:Principles andApplications.
  • 7Roe, P.L., Approximate Riemann Solvers, ParameterVectors, and Difference Schemes. J. ComputationalPhysics, 43 (1981).
  • 8Van Leer, B_,Towards the Ultimate ConservativeDifference Scheme V. A second Order Sequel to Godunov's method. J. Computational Physics,32 (1979)\.
  • 9Jameson, A., Schmidt, W., Turkel, E.,Numerical Solutionsof the Euler Equations by Finite Volume Methods UsingRunge-Kutta Time-Stepping Schemes. AIAA Paper 81-1259, 1981.
  • 10Brandt, A Guide to Multigrid Development. MultigridMethods/Lecture Notes in Mathematics, No. 960,SpringerVerlag, New York, 1981.

同被引文献10

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部