期刊文献+

浮选过程精矿品位软测量技术的研究进展 被引量:5

Research progress in soft sensing technology for estimation of concentrate grade in process of flotation
原文传递
导出
摘要 精矿品位是反映浮选过程的一项重要经济技术指标,而在浮选过程中精矿品位一直难以得到快速精确的测量,从而影响着浮选过程的优化与控制。综述了近年来国内外对于浮选过程精矿品位软测量技术的研究现状,着重介绍了基于回归分析、神经网络和支持向量机等软测量建模方法,并对软测量技术在精矿品位预测中的应用前景进行了展望。 The concentrate grade is an important economical index reflecting the performance of flotation process, while the concentrate grade is hard to realtime measure exactly and rapidly, which affects the optimization and control of the flotation process. The paper summarized the soft sensing technology for estimation of concentrate grade in process of flotation over recent years at home and abroad; and stressed the modeling method for soft sensing technology based on regression analysis, neural network and support vector machine. It also prospected the application of soft sensing technology to estimation of concentrate grade.
出处 《矿山机械》 北大核心 2013年第8期8-12,共5页 Mining & Processing Equipment
基金 中央高校基本科研业务费专项资金资助项目(2012LWB22)
关键词 精矿品位 软测量 浮选过程 回归分析 神经网络 支持向量机 : concentrate grade soft sensing flotation process regression analysis neural network supportvector machinemachine
  • 相关文献

参考文献20

二级参考文献187

共引文献147

同被引文献33

  • 1Mohanty S. Artificial neural network based systemidentification and model predictive control of a flotationcolumn[ J]. Process Control,2009,19(6) :991 - 999.
  • 2Cilek E C. Application of neural networks to predict lockedcycle flotation test results[ J]. Minerals Engineering,2002,15(12):1095 -1104.
  • 3Gouws F S,Aldrich C. Rule-based characterization of industrialflotation processes with inductive techniques and geneticalgorithms [ J ]. Industrial and Engineering Chemistry Research,1996,35(11) :4119 -4127.
  • 4Wang Z,Chang J, Ju Q P, et al. Prediction model of end-point manganese content for BOF steelmaking process [ J].ISIJ International^2012,52(9) : 1585 - 1590.
  • 5Warren L J. Determination of the contributions of trueflotation and entrainment in batch flotation tests [ J ].International Journal of Mineral Processing, 1985 ,14 ( 1 ):33 -44.
  • 6Sifakis E G,Prentza A, Koutsouris D, et al. Evaluating theeffect of various background correction methods regardingnoise reduction,in two-channel microarray data [ J ].Computers in Biology and Medicine, 2012,42 (1) : 19 -29.
  • 7何桂春,黄开启.浮选指标与浮选泡沫数字图像关系研究[J].金属矿山,2008,37(8):96-101. 被引量:20
  • 8郝中华.BP神经网络的非线性思想[J].洛阳师范学院学报,2008,27(4):51-55. 被引量:12
  • 9杨丽君,史帅星,陈东,董干国,张跃军,赖茂河.200m^3充气机械搅拌式浮选机动力学研究[J].有色金属(选矿部分),2009(2):29-31. 被引量:14
  • 10王淑红,孙永峰,董风芝.基于主成分分析法的神经网络模型与箱线图在选厂中的应用[J].中国矿业,2009,18(11):107-109. 被引量:2

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部