期刊文献+

完全隐式返回映射算法对岩土地基问题的求解 被引量:6

FULLY IMPLICIT RETURN MAPPING ALGORITHM FOR SOLVING THE PROBLEMS OF GEOTECHNICAL FOUNDATION
原文传递
导出
摘要 针对岩土工程中的复杂力学问题,在弹塑性力学理论框架和非线性有限元理论基础上,采用非关联等向硬化Drucker-Prager模型的完全隐式积分算法—返回映射算法(Return MappingAlgorithm)编制了有限元求解程序。该算法可以避免预测应力漂移屈服面的现象,对准静态变形条件下的本构方程可以获得准确解,在迭代中使用Newton-Raphson法获得近似平方的收敛速率,具有较高的精确性和稳定性。对岩土工程中的地基问题进行求解,计算得出位移、应力等结果,模拟了塑性区随载荷步增加的演化过程,对地基极限承载力进行了解析解和数值解的对比。结果表明了算法的优越性、程序的正确性和实用性。 To solve complicated mechanics problems in geotechnical engineering, the finite element program is compiled with fully implicit integration algorithm which is return mapping algorithm of non-associative isotropic hardening Drucker-Prager criterion based on the elastic-plastic mechanics theory frame and the nonlinear finite element theory. Return mapping algorithm can avoid the drift phenomenon of the trial stress, and can achieve the accurate solution of the constitutive equation on the condition of the quasi-static deformation, a quadratic convergence rate when using the Newton-Raphson iteration scheme, higher accuracy and stability. To solve the problems of foundations in geotechnical engineering, displacements and stresses are calculated, and the evolution process of plastic zones is simulated. The ultimate bearing capacity of the analytical solution is compared with that from the numerical solution. The results demonstrate the superiority of the algorithm, and the correctness and the practicality of the program.
出处 《工程力学》 EI CSCD 北大核心 2013年第8期83-89,共7页 Engineering Mechanics
基金 国家自然科学基金项目(51079010) 中央高校基本科研业务费专项资金项目(2013YB03) 大连市交通科技项目(2011-10) 吉林省交通厅交通运输科技项目(2012-1-6)
关键词 岩土力学 有限元 非关联等向硬化 DRUCKER-PRAGER模型 完全隐式积分算法 返回映射算法 rock and soil mechanics finite element non-associative isotropic hardening Drucker-Prager model fully implicit integration algorithm return mapping algorithm
  • 相关文献

参考文献12

  • 1TedBelytschko WingKamLiu BrianMoran 庄茁(译).连续体和结构的非线性有限元[M].北京:清华大学出版社,2002..
  • 2Krieg R D, Krieg D B. Accuracies of numerical solution methods for the elastic-perfectly plastic model [J]. ASME J. Pressure Vessel Technol, 1977, 99(4): 510--515.
  • 3Simo J C, Taylor R L. Consistent tangent operators for rate independent elastoplasticity [J]. Computer Methods in Applied Mechanics and Engineering, 1985, 48(1): 101--118.
  • 4Simo J C, Hughes T J R. Computational inelasticity [M]. New York: Springer-Verlag, 1998: 32--43.
  • 5Asensio G, Moreno C. Linearization and return mapping algorithms for elastoplasticity models [J]. International Journal for Numerical Methods in Engineering, 2003, 57(7): 991-- 1014.
  • 6Wang X, Wang L B, Xu L M. Formulation of the return mapping algorithm for elastoplastic soil models [J]. Computers and Geotechnics, 2004, 31 (4): 315-- 338.
  • 7杨强,杨晓君,陈新.基于D-P准则的理想弹塑性本构关系积分研究[J].工程力学,2005,22(4):15-19. 被引量:40
  • 8Nukala P K V V. A return mapping algorithm for cyclic viscoplastic constitutive models [J]. Comput. Methods Appl. Mech. Engrg, 2006, 195(1/2/3): 148--178.
  • 9Clansen J, Damkilde L, Andersen L. An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space [J]. Computers and Structures, 2007, 85: 1795-- 1807.
  • 10陈明祥.关于返回映射算法中应力的四阶张量值函数[J].力学学报,2010,42(2):228-237. 被引量:6

二级参考文献21

  • 1方辉宇.张量函数的表示理论──本构方程统一不变性研究[J].力学进展,1996,26(1):114-137. 被引量:8
  • 2Simo JC, Taylor RL. Consistent tangent operators for rate-independent elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 1985, 48:101-118.
  • 3Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. New York: John Wiley Sons & Ltd, 2000.
  • 4Zheng QS, Betten J. On the tensor function representations of 2nd-order and 4th-order tensors. Zeitschrift fur angewandte Mathematik und Mechanik, 1995, 75:269-281.
  • 5Rosati L. A novel approach to the solution for the tensor equation AX+XA=H. International Journal of Solids and Structures, 2000, 37:3457-3477.
  • 6Larsson R, Runesson K. Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type. Mechanics of Cohesive-Frictional Materials, 1996, 1:367-383.
  • 7Perid D, Souza Neto E. A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering, 1999, 171: 463-489.
  • 8Foster CD, Regueiro RA, Fossum AF, et al. Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials. Computer Methods in Applied Mechanics and Engineering, 2005, 194:5109-5138.
  • 9Clausen J, Damkilde L, Andersen L. An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space. Computers and Structures, 2007, 85:1795-1807.
  • 10Wang ZQ, Dui GS. Two-point constitutive equations and integration algorithms for isotropic-hardening rateindependent elastoplastic materials in large deformation. International Journal for Numerical Methods in Engineering, 2008, 75(12): 1435-1456.

共引文献75

同被引文献58

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部