期刊文献+

限制性四体问题中的时间相关不变流形 被引量:3

Time-Dependent Invariant Manifolds in the Restricted Four-Body Problem
下载PDF
导出
摘要 借助有限时间Lyapunov指数(FTLE)定义了拉格朗日拟序结构(LCS),并将LCS作为不变流形的替代物。针对日-地-月双圆模型(BCM),利用LCS研究了限制性四体问题(R4BP)中的时间相关不变流形(TDIM)的性质。采用数值方法验证了TDIM是运动分界面和轨道不变集。继而,利用二分法对给定Poincare截面上的LCS进行了精确提取,通过一系列等能量面上的LCS描绘出TDIM在给定截面上的构形。最后,借助TDIM,初步研究了低能奔月轨道在非自治系统BCM中的直接构建。 The lagrangian coherent structure (LCS) is defined as ridges of finite-time Lyapunov exponent (FTLE) fields, and it is demonstrated that an understanding of time-dependent invariant manifold (TDIM) can be obtained by use of LCS. Taking Sun-Earth-Moon bicircular model (BCM) as an example and LCS as a tool, the property of the TDIM of restricted 4-body problem (R4BP) is demonstrated numerically that TDIM is invariant set of orbits and acts as separatrix. Dichotomy is then used to extract the LCS on the Poincare section, and the configuration of TDIM on specified section is illustrated by a series of LCS with regularly spaced energy. Finally, low energy transfer from the Earth to the Moon is constructed in BCM directly.
作者 祁瑞 徐世杰
出处 《宇航学报》 EI CAS CSCD 北大核心 2013年第8期1055-1062,共8页 Journal of Astronautics
基金 国家自然科学基金(11172020)
关键词 限制性四体问题 时间相关不变流形 拉格朗日拟序结构 低能奔月轨道 庞加莱截面 R4BP Time-dependent invariant manifold LCS Low energy transfer Poincare section
  • 相关文献

参考文献18

  • 1龚胜平,李俊峰,宝音贺西,高云峰.基于不变流形的登月轨道设计[J].应用数学和力学,2007,28(2):183-190. 被引量:22
  • 2Peng H J, Gao Q, Wu Z G, et al. Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in astrodynamics [ J ]. Celestial Mechanics and Dynamical Astronomy, 2011, 110(4) : 319 -342.
  • 3Qi R, Xu S J, Xu M. Impulsive control for formation flight about libration points [ J ]. Journal of Guidance, Control, and Dynamics, 2012, 35(2) : 484 -496.
  • 4任远,崔平远,栾恩杰.基于不变流形的小推力Halo轨道转移方法研究[J].宇航学报,2007,28(5):1113-1118. 被引量:8
  • 5李明涛,郑建华,于锡峥,高东.IPS转移轨道设计技术[J].宇航学报,2009,30(1):72-81. 被引量:10
  • 6Parker T S, Chua L O. Practical numerical algorithms for chaotic systems [ M ]. New York : Springer-Verleg, 1989.
  • 7Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[ J]. Physica D, 2005,212 : 271 - 304.
  • 8Gawlik E S, Du Toit P C, Campagnola S, et al. Lagrangian coherent structures in the planar ellipticrestricted three-body problem[ J ]. Celestial Mechanics and Dynamical Astronomy, 2009, 103 : 227 -249.
  • 9Short C R, Howell K C. Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes [ C ]. The 63rd International Astronautical Congress, Naples, Italy, Oct 1-5, 2012.
  • 10Koon W S, Lo M W, Marsden J E, et al. Dynamical systems, the three-body problem, and space mission design [ M ]. Berlin : World Scientific, 2000 : 125 - 128.

二级参考文献106

共引文献54

同被引文献36

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部