摘要
截尾Gauss分布是湍流燃烧中常用的一种瞬时标量概率密度函数形式,但其中的待定参数较难以计算.本文对截尾Gauss分布进行了理论分析,获得了截尾Gauss分布的若干性质.表明当标量脉动均方值(g)较大时,待定参数μ和σ之间呈线性关系,这使得求解待定参数的方程组退化为包含单一变量的方程.在一般的g取值条件下,通过提取标量平均值(f)的等值线并沿其进行插值,可快速地求解出不同f与g值下的待定参数μ和σ,并建立了相应的表格.
The clipped Gaussian distribution is a probability density function of instantaneous scalar, which is commonly used in turbulent combustions. However, it is difficult to determine its unknown parameters. A theoretical analysis is made for the clipped Gaussian distribution in this paper. Some of its properties are discussed. When the mean square of the fluctuating scal^r (9) becomes large, the unknown parameters t~ and have a linear relationship. Thus the determination of the unknown parameters is reduced to the determination of a single parameter. For general values of g, the contour lines of the averaged scalar (f) are extracted and the interpolation along them is performed. The unknown parameters # and a are determined rapidly under different values of f and g. A data table is established.
出处
《力学与实践》
北大核心
2013年第4期48-52,共5页
Mechanics in Engineering
基金
国家自然科学基金资助项目(51076082)
关键词
截尾Gauss分布
概率密度函数
湍流燃烧
clipped gaussian distribution, probability density function, turbulent combustion