期刊文献+

表面等离子体激元增强非线性的原理及应用 被引量:11

Surface Plasmon Polariton Enhanced Nonlinearity and Applications
原文传递
导出
摘要 介绍了表面等离子体激元的电磁场局域与放大效应对于非线性响应的增强机制。电磁波与金属中自由电子耦合所产生的表面等离子体激元,可使金属表面亚波长空间尺度内的电磁场能量密度得到增强,放大非线性效应幅度,降低非线性过程所需要的入射光强,实现纳米尺度内弱光非线性效应的产生。以纳米颗粒为例介绍表面等离子体激元共振对于电磁场及非线性增强的机理,同时介绍描述纳米复合材料有效非线性系数的有效非线性介质理论,并使用该理论分析表面等离子体激元场对于非对称裂环超材料有效非线性的调控能力,最后介绍了利用表面等离子体激元共振场实现对于非线性旋光效应的增强。利用等离子体激元增强非线性为实现纳米弱光非线性技术提供了一种很好的途径。 This paper is focused on an introduction to the meclaamsm oI nomlnearlty cnnaHcc,HcllL -y confinement and magnification effects of surface plasmon polariton (SPP). By coupling the incident electromagnetic field with the coherent motion of free-electron plasma in the metal, SPP is excited near the metal surface, providing field confinement in nanoscale, which results in the enhancement of electrical field and nonlinearity magnitude. The light intensity required for nonlinear process is dramatically reduced and the occurrence of weak light nonlinear process in nanoscale is possible. Starting from the situation of metallic nanoparticle system, the basic principle of enhancement of electric field and nonlinearity by surface plasmon resonance is introduced. A theory for the evaluation of third-order optical susceptibility of nonlinear nano-composites is presented, which is further used to analyze the nonlinear property of an asymmetric split ring metamaterial. Finally, the surface plasmon resonance is used to enhance the magnitude of nonlinear optical activity effect. The nonlinearity enhancement by surface plasmon is proved to pave a way for the development of weak light nonlinearity in nanoscale.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第8期14-22,共9页 Laser & Optoelectronics Progress
基金 国家973计划(2013CB328702 2010CB934101) 国家自然科学基金(11004112 11204142) 高等学校学科创新引智计划(B07013) 中央高校基本科研业务费专项资金
关键词 非线性光学 等离子体激元 Z扫描 超材料 双光子吸收 非线性旋光 场增强 nonlinear optics plasmon polariton z-scan metamaterial two-photon absorption nonlinear opticalactivity field enhancement
  • 相关文献

参考文献31

  • 1P Gunter, J P Huingard. Photorefractive Materials and Their Applications I: Fundamental Phenomena [M]. Berlin Springer, 1988.
  • 2S E Harris. Electromagnetically induced transparency [J]. Phys Today, 1997, 50(7)= 36-42.
  • 3B Coreoran, C Monat, C Grillet, et al: Green light emission in silicon through slow light enhanced third-harmonic generation in photonic-crystal waveguides [J]. Nature Photon, 2009, 3(4): 206-210.
  • 4S A Maier. Plasmonics: Fundamentals and Applications [M]. Berlin: Springer, 2007.
  • 5M Fleischmann, P J Hendra, A J Mcquillan. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem Phys Lett, 1974, 26(2): 163-166.
  • 6K Macdonald, Z Sgmson, M Stockman, et al: Ultrafast active plasmonics [J]. Nature Photon, 2008, 3(1): 55-58.
  • 7C K Chen, T F Heinz, D Rieard, et al: Surface-enhanced second-harmonic generation and Raman scattering [J]. Phys Rev B, 1983, 27(4): 1965-1979.
  • 8D Rieard, P Roussignol, C Flytzanis. Surface mediated enhancement of optical phase conjugation in metal colloids [J]. Opt Lett, 1985, 10(10): 511-513.
  • 9D Cho, W Wu, E Ponizovskaya, et al: Ultrafast modulation of optical metamaterials [J]. Opt Express, 2009, 17(20): 17652-17657.
  • 10K M Dani, Z Ku, P C Upadhya, et al: Subpicosecond optical switching with a negative index metamaterial [J]. Nano Lett, 2009, 9(10): 3565-3569.

同被引文献111

  • 1李春芳,杨晓燕,段弢,张纪岳.电介质膜增强的Goos-Hnchen位移的微波测量[J].中国激光,2006,33(6):753-755. 被引量:8
  • 2顾本源.表面等离子体亚波长光学原理和新颖效应[J].物理,2007,36(4):280-287. 被引量:40
  • 3Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
  • 4Raether H. Surface Plasmons: on Smooth and Rough Surfaces and on Gratings[M]. Berlin: Springer-Verlag, 1988.4-16.
  • 5Fang N, Liu Z L, Yen T J, et al.. Regenerating evanescent waves from a silver'superlens[J]. Opt Express, 2003, 11(7): 682-687.
  • 6Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780-4782.
  • 7Wang B, Wang G P. Simulations of nanoscale interferometer and array focusing by metal heterowaveguides[J]. Opt Express, 2005, 13(26): 10558-10563.
  • 8Pile D F P, Ogawa T, Gramotnev D, et al.. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide [J]. Appl Phys Lett, 2005, 87(26): 261114.
  • 9Bozhevolnyi S I, Volkov V S, Devaux E, et al.. Channel plasmon-polariton guiding by subwavelength metal grooves[J]. Phys Rev Lett, 2005, 95(4): 046802.
  • 10Wang J, Wang Y, Zhang X, et al.. Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna[J]. Journal of Modern Optics, 2010, 57(17): 1630-1634.

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部