期刊文献+

连续变量多色纠缠态光场 被引量:4

Continuous Variable Multi-Color Entangled Optical Fields
原文传递
导出
摘要 具有正交振幅和相位分量量子关联的纠缠态光场是执行连续变量量子通信和量子计算研究的基本资源。随着量子信息科学的迅速发展,研究和构建可实用的量子信息网络已成为该领域科技工作者的主要目标。为了实现量子信息经由若干量子中继的远距离传送,第一步必须制备与原子存储及光纤通信波段相匹配的多色纠缠态。概述了连续变量纠缠态光场的概念和发展,介绍了产生双色及三色纠缠态光场的实验进展,最后从制备原理和实验方法方面详细描述了近期完成的与原子谱线和光纤传输窗口对应的三色纠缠态光场的研究。 The entangled states of light with quantum correlations of quadrature amplitude and phase components are the key resources for realizing the continuous variable quantum communication and quantum calculation. With the rapid development of quantum information science, researching and establishing practicable quantum information networks have become the main goal pursued by scientists in this field. For developing the long-distance transfer of quantum information via quantum repeaters, it is essential to prepare multipartite entangled states consisting of multi-color optical sub-modes respectively at fiber transmission and atomic transition frequencies. We briefly introduce the concept and the development of the continuous variable entangled optical fields firstly, then summarize the generation experiments of two-color and three-color entangled optical fields. At last the generation principle and the experimental method of three-color entangled optical fields at the atomic transition frequency and the communication window of optical fibers accomplished by our ~roup recently are presented detailedlv.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第8期69-73,共5页 Laser & Optoelectronics Progress
基金 国家973计划(2010CB923103) 国家自然科学基金创新研究群体科学基金(61121064) 国家自然科学基金(11074157) 山西省高等学校优秀青年学术带头人支持计划
关键词 量子光学 双色纠缠态光场 三色纠缠态光场 连续变量 非简并光学参量振荡腔 量子信息网络 quantum optics two-color entangled optical fields three-color entangled optical fields continuousvariable non-degenerated optical parameter oscillator quantum information network
  • 相关文献

参考文献28

  • 1D Bouwmeester, J W Pan, K Mattle, et al: Experimental quantum teleportation [J]. Nature, 1997, 390(6660) : 575- 579.
  • 2R Horodecki, P Horodecki, M Horodecki, et al: Quantum entanglement [J]. Rev Mod Phys, 2009, 81(2): 865-942.
  • 3J W Pan, Z B Chen, C Y Lu, et al: Multiphoton entanglement and interferometry [J]. Rev Mod Phys, 2012, 84(2) 777-838.
  • 4S L Braunstein, Peter van Loock. Quantum information with continuous variables [J]. Rev Mod Phys, 2005, 77 (2): 513- 577.
  • 5M D Reid, P D Drummond, W P Bowen, et al: Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications [J]. RevModPhys, 2009, 81(4): 1727-1751.
  • 6Z Y Ou, S F Pereira, H J Kimble, et al: Realization of the Einstein-Podolsky-Rosen paradox for continuous variables [J]. Phys Rev Lett, 1992, 68(25): 3663-3666.
  • 7A Furusawa, J L Srensen, S L Braunstein, et al: Unconditional quantum teleportation [J]. Science, 1998, 282(5389) : 706-709.
  • 8H F Hofmann, TIde, T Kobayashi, et al: Fidelity and information in the quantum teleportation of continuous variables [J]. PhysRevA, 2000, 62(6): 062304.
  • 9X Y Li, Q Pan, J T Jing, et al: Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam [J]. Phys Rev Lett, 2002, 88(4): 047904.
  • 10J Mizuno, K Wakui, A Furusawa, et al: Experimental demonstration of entanglement assisted coding using a two-mode squeezed vacuum state [J]. Phys RevA, 2005, 71(1): 012304.

同被引文献44

  • 1A Einstein, B Podolsky, N Rosen. Can quantum- mechanical description of physical reality be considered complete?[J]. Phys Rev, 1935, 47(10): 0777-0780.
  • 2E Schrdinger. Die gegenwiirtige situation in der quantenmechanik[J]. Naturwissenschaften, 1935, 23(49): 823-828.
  • 3C Bennett H, G Brassard, C Crepeau, et al.. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels[J]. Phys Rev Lett, 1993, 70(13): 1895-1899.
  • 4M Zukowshi, A Zeilinger, M A Horne, et al.. "Event-ready-detectors" Bell experiment via entanglement swapping[J]. Phys Rev Lett, 1993, 71(26): 4287-4290.
  • 5C H Bennett, S J Wiesner. Communication via one-particle and two-particle operators on Einstein- Podolsky- Rosen states[J]. Phys Rev Lett, 1992, 69(20): 2881-2884.
  • 6A K Ekert. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991, 67(6): 661-663.
  • 7Adriano Barenco, David Deutsch, Artur Ekert, et al.. Conditional quantum dynamics and logic gates[J]. Phys Rev Lett, 1995. 74(20): 4083-4086.
  • 8H Ollivier, W H Zurek. Quantum discord: a measure of the quantumness of correlations[J]. Phys Rev Lett, 2002, 88(1) 017901.
  • 9L Henderson, V Vedral. Classical quantum and total correlations[J]. J Phys A, 2001, 34(35): 6899-6905.
  • 10M Ali, A R P Rau, G Alber. Quantum discord for two-qubit X states[J]. Phys Rev A, 2010, 81(4): 042105.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部