摘要
研究一类属于不同公司的配送中心共享车队、仓储等资源为客户协同配送货物的协同车辆路径问题,将之视为"部分客户被一车辆访问"的集合划分问题。考虑车辆容量、车辆行驶最大里程、车辆配送任务的可靠性概率、时间窗等约束条件,建立以车辆配送总费用最小为目标的混合整数规划模型,并设计了求解该问题的遗传算法求解该问题。最后,通过一个算例验证了模型的正确性和合理性。
This paper studied the collaborative vehicle routing problem( CVRP), which depots belonged to different compa- nies served their customers by sharing motorcades and warehousing to optimize total cost of collaborative transport, treated as a "some customers are serviced by a vehicle" set-partitioning problem. Considering some constraints such as vehicle' s capacity, maximum mileages of different vehicles, reliability of vehicle' s delivery and time window etc. , it built a mixed integer pro- gramming model for collaborative vehicles routing to optimize total cost of dispatching. The model was solved by genetic algo- rithm (GA). Finally, an example shows the correctness and effectiveness of the model.
出处
《计算机应用研究》
CSCD
北大核心
2013年第8期2280-2282,2287,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(61174188)
南通大学自然科学类科研基金资助项目(12Z046
10Z029)
华南理工大学中央高校基本科研业务费资助项目(2012ZM0092)
江苏省大学生创新训练计划重点项目(201310304040Z)
关键词
物流
协同运输
遗传算法
车辆路径问题
车辆任务可靠性
logistics
collaborative transport
genetic algorithm
vehicle route problem
vehicle task reliability