期刊文献+

一种改进的基于蚁群优化的粒子滤波算法 被引量:8

Improved particle filter algorithm based on ant colony optimization
下载PDF
导出
摘要 针对传统粒子滤波算法中粒子匮乏以及粒子多样性丧失的问题,提出了一种基于蚁群优化的改进粒子滤波算法。该算法利用蚁群算法优化粒子滤波的重采样过程,使粒子在更新权值后,利用转移概率向权值较优粒子的位置移动,以防止权值较小的粒子在多次迭代后退化消失;同时,设置转移阈值,以抑制权值较优粒子间的转移,从而同时解决了粒子匮乏以及粒子多样性丧失的问题。实验结果表明,该算法具有较高的预估精度和较好的鲁棒性。 This paper proposed an improved particle algorithm based on AC0 (ant colony optimization)to solve the problem of particle deficiency and loss of particle diversity in traditional particle filter algorithm. The improved algorithm optimized the re- sampling process of particle filter algorithm by ACO, the small weight particles moved to the location with better weight parti- cles by transition probability after the weights updating, which prevented the smaller weights particles disappear after several iterations, at the same time, the algorithm set a transition threshold to refrain transfer between better weights particles. They solved the problem of particle deficiency and loss of particle diversity at the same time. Experimental results show that this al- gorithm has higher states estimation accuracy and better robustness.
出处 《计算机应用研究》 CSCD 北大核心 2013年第8期2402-2404,共3页 Application Research of Computers
基金 江西省教育厅科技项目(GJJ12305) 江西省自然科学基金资助项目(2010GZS0025) 江西省科技支撑计划资助项目(20123BBE50093)
关键词 粒子滤波 蚁群算法 转移概率 转移阈值 预估精度 particle filter(PF) ant colony optimization(ACO) transition probability transition threshold estimation accuracy
  • 相关文献

参考文献8

  • 1张卫明,张炎华,钟山.蒙特卡罗粒子滤波算法应用研究[J].微计算机信息,2007(01S):295-297. 被引量:13
  • 2GORDON N, SALMOND D. Novel approach to non-linear and non- Gaussian Bayesian state estimation [ J]. Proceedings of Institute Electric Engineering, 1993,140 (2) : 107-113.
  • 3PARK S, HWANG J, ROU K, et al. A new particle filter inspired by biological evolution: genetic filter[ J]. Journal of Applied Science Engineering and Technology,2007,4( 1 ) :459-463.
  • 4叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 5方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 6DORIGO M, MANIEZZO V, COLOMI A. The ant system: optimiza- tion by a colony of coorperating agents[J]. IEEE Trans on Sys- tems,Man, and Cybernetics: Part B,1996,26(1):29-41.
  • 7ARULAMPALAM M S, MASKELL S. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [ J ]. IEEE Trens on Signal Processing ,2002,50 ( 2 ) : 174-188.
  • 8代少升,齐威.一种改进的多单元粒子滤波算法[J].计算机工程与应用,2011,47(36):155-158. 被引量:3

二级参考文献37

  • 1Crisan D,Doucet A.A survey of convergence results on particle filtering methods for practitioners[J].IEEE Transactions on Signal Processing, 2002,50(3 ) : 736-746.
  • 2Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on par- ticle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50 (2) : 174-188.
  • 3Liu J S,Chen R Wong W H.Rejection control and sequential importance sampling[J].Journal of the American Statistical Asso- ciation, 1998,93 (443) : 1022-1031.
  • 4Li Fu.Particle filter algorithm and circuit design[D].Xi'an: Xidian University, 2010.
  • 5Hong S, Djuric P M.High-throughput scalable parallel resampling mechanism for effective redistribution of particles[J],IEEE Trains on Signal Processing,2006,54(3) 1145-1155.
  • 6Hong S,Bolid M,Djurid P M.An efficient fixed-point imple- mentation of residual systematic resampling scheme for high-speed particle filters[J].IEEE Signal Process Lett 2004 11(5):482-485.
  • 7Bogdan K.Finding location using a particle filter and histogram matching[C].Proc of Artificial Intelligence and Soft Computing.Poland:Springer,2004:786-791.
  • 8Doucet A.On sequential simulation based methods for Bayesian filtering[J].Statistics and Computing,1998,10(3):197-208.
  • 9Thrun S.Particle filters in robotics[C].Proc of Uncertainty in AI.San Francisco:Morgan Kaufmann Publishers,2002:511-518.
  • 10Carpenter J,Clifford P,Fernhead P.An improved particle filter for non-linear problems[R].Oxford:University of Oxford,1997.

共引文献138

同被引文献75

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部