摘要
针对传统粒子滤波算法中粒子匮乏以及粒子多样性丧失的问题,提出了一种基于蚁群优化的改进粒子滤波算法。该算法利用蚁群算法优化粒子滤波的重采样过程,使粒子在更新权值后,利用转移概率向权值较优粒子的位置移动,以防止权值较小的粒子在多次迭代后退化消失;同时,设置转移阈值,以抑制权值较优粒子间的转移,从而同时解决了粒子匮乏以及粒子多样性丧失的问题。实验结果表明,该算法具有较高的预估精度和较好的鲁棒性。
This paper proposed an improved particle algorithm based on AC0 (ant colony optimization)to solve the problem of particle deficiency and loss of particle diversity in traditional particle filter algorithm. The improved algorithm optimized the re- sampling process of particle filter algorithm by ACO, the small weight particles moved to the location with better weight parti- cles by transition probability after the weights updating, which prevented the smaller weights particles disappear after several iterations, at the same time, the algorithm set a transition threshold to refrain transfer between better weights particles. They solved the problem of particle deficiency and loss of particle diversity at the same time. Experimental results show that this al- gorithm has higher states estimation accuracy and better robustness.
出处
《计算机应用研究》
CSCD
北大核心
2013年第8期2402-2404,共3页
Application Research of Computers
基金
江西省教育厅科技项目(GJJ12305)
江西省自然科学基金资助项目(2010GZS0025)
江西省科技支撑计划资助项目(20123BBE50093)
关键词
粒子滤波
蚁群算法
转移概率
转移阈值
预估精度
particle filter(PF)
ant colony optimization(ACO)
transition probability
transition threshold
estimation accuracy