期刊文献+

基于近邻加权及多示例的多标记学习改进算法

Modified algorithm for multi-label learning based on neighbors weighting and multi-instance
下载PDF
导出
摘要 多数多标记学习方法通过在输出空间中,单示例同时与多个类别标记相关联表示多义性,目前有研究通过在输入空间将单一示例转化为示例包,建立包中多示例与多标记的联系。算法在生成示例包时采用等权重平均法计算每个标记对应样例的均值。由于数据具有局部分布特征,在计算该均值时考虑数据局部分布,将会使生成的示例包更加准确。本论文充分考虑数据分布特性,提出新的分类算法。实验表明改进算法性能优于其他常用多标记学习算法。 In most cases, the inherent ambiguity of each instance is explicitly expressed in the output space based on associa- tions with multiple class labels. Recent studies indicate that the instance ambiguity can be expressed in the input space by trans- forming a single instance into a bag of instances and establishing the relations between sets of labels and bags of transformed in- stances. However, the bags of instances are generated by calculating the mean values of instances corresponding to the each la- bel with equal weight for each instance. Because of the local distribution characteristics of data, taking the local distribution of data will generate more accurate instance bags. This paper fully considers the local distribution characteristics, and proposes a new multi-label classification algorithm. Experimental results show that it outperforms other proposed multi-label algorithms.
出处 《计算机工程与应用》 CSCD 2013年第16期113-116,200,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61170145) 教育部高等学校博士点专项基金(No.20113704110001) 山东省自然科学基金和科技攻关计划项目(No.ZR2010FM021 No.2008B0026 No.2010G0020115)
关键词 多标记分类 多示例学习 权重 K近邻 multi-label classification multi-instance learning weighting K-Nearest Neighbour(KNN)
  • 相关文献

参考文献14

  • 1McCallum A.Multi-label text classification with a mixture model trained by EM[C]//Working Notes of the AAAI' 99 Work- shop on Text Learning.Menlo Park,CA:AAAI, 1999: 1-7.
  • 2Schapire R E, Singer Y.Boostexter: a boosting-based system for text categorization[J].Machine Learning, 2000,39 (2/3) : 135-168.
  • 3Boutell M R, Luo J, Shen X, et al.Learning multi-label scene classification[J].Pattern Recognition, 2004,37 (9) : 1757-1771.
  • 4Joachims T.Text categorization with support vector machines: learning with many relevant features[C]//Proceedings of the 10th European Conference on Machine Learning, 1998 : 137-142.
  • 5Yang Y.An evaluation of statistical approaches to text cate- gorization[J].Information Retrieval, 1999, 1(1/2) :69-90.
  • 6Crammer K, Singer Y.A new family of online algorithms for category ranking[C]//Proceedings of the 25th Annual Inter- national ACM SIGIR Conference on Research and Develop- ment in Information Retrieval , 2002:151-158.
  • 7Elisseeff A, Weston J.A kernel method for multi-labeled classi- fication[C]//Advances in Neural Information Processing Systems 14 (NIPS' 01 ).Cambridge, MA : MIT Press, 2002 : 681-687.
  • 8Ueda N, Saito K.Parametric mixture models for multi-labeled text[C]//Advances in Neural Information Processing Systems 15 (NIPS' 02) .Cambridge, MA: MIT Press, 2003 : 721-728.
  • 9Zhang M L, Zhou Z H.Multi-label neural networks with appli- cations to functional genomics and text categorization[J].IEEE Trans on Knowledge and Data Engineering,2006, 18(10): 1338-1351.
  • 10Zhang M L, Zhou Z H.ML-KNN: a lazy learning approach to multi-label learning[J].Pattern Recognition, 2007,40(7) : 2038-2048.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部